【題目】直線x軸、y軸分別交于點B、C,拋物線經(jīng)過點B、C,并與x軸交于另一點A.

(1)求此拋物線及直線AC的函數(shù)表達(dá)式;

(2)垂直于y軸的直線l與拋物線交于點P(,),Q(,),與直線BC交于點,N(,),若,結(jié)合函數(shù)的圖象,求的取值范圍

(3)經(jīng)過點D(0,1)的直線m與射線AC、射線OB分別交于點M、N.當(dāng)直線m繞點D旋轉(zhuǎn)時, 是否為定值,若是,求出這個值,若不是,說明理由.

【答案】(1)=;(2)1<<2;(3)為定值3.

【解析】(1)先求得直線y=-x+3x軸、y軸的交點B、C的坐標(biāo),代入入求得a、k的值,即可得拋物線的函數(shù)表達(dá)式;令y=0,求得點A的坐標(biāo),再用待定系數(shù)法求得直線AC的函數(shù)表達(dá)式即可;(2)根據(jù)題意可得y1=y2,即可得x1+x2=2;當(dāng)直線l1經(jīng)過點C時,x1=x3=0,x2=2,此時x1+x3+x2=2,當(dāng)直線l2經(jīng)過頂點(1,4)時,直線BC的解析式為,y=4時,x=﹣1, 此時,x1=x2=1,x3=﹣1,此時x1+x3+x2=1;當(dāng)直線l在直線l1與直線l2之間時,x3x1x2,即可得1<<2;(3)為定值3,設(shè)直線MN的解析式為y=kx+1.把y=0代入y=kx+1得:kx+1=0,解得:x=,所以點N的坐標(biāo)為(0).所以AN=+1=即可得=;y=3x+3y=kx+1聯(lián)立解得:x=.求得點M的橫坐標(biāo)為 過點MMGx軸,垂足為G.則AG==.再由MAG∽△CAO,根據(jù)相似三角形的性質(zhì)可得,,==,由此可得=+==3.

(1)∵直線y=-x+3x軸、y軸分別交于點B、C,

B(3,0),C(0,3);

B(3,0),C(0,3)代入得,

解得 ,

∴拋物線函數(shù)表達(dá)式為=

y=0,可得=0,解得x1=-1,x2=3;

A(-1,0);

設(shè)AC的解析式為y=kx+b,

,

解得,

∴直線AC的函數(shù)表達(dá)式為

2)∵y1=y2,∴x1+x2=2

當(dāng)直線l1經(jīng)過點C時,x1=x3=0x2=2,此時x1+x3+x2=2,

當(dāng)直線l2經(jīng)過頂點(1,4)時,直線BC的解析式為,y=4時,x=﹣1, 此時,x1=x2=1,x3=﹣1,此時x1+x3+x2=1;當(dāng)直線l在直線l1與直線l2之間時,x3x1x2 ,

1<<2

(3)為定值3.

理由如下:設(shè)直線MN的解析式為y=kx+1.把y=0代入y=kx+1得:kx+1=0,解得:x=,

∴點N的坐標(biāo)為(,0).∴AN=+1=,=;

y=3x+3y=kx+1聯(lián)立解得:x=∴點M的橫坐標(biāo)為

過點MMGx軸,垂足為G.則AG==

∵△MAG∽△CAO,,

,==

=+==3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,ABAC

1)如圖1,在ADE中,若ADAE,且∠DAE=∠BAC,求證:CDBE

2)如圖2,在ADE中,若∠DAE=∠BAC60°,且CD垂直平分AEAD6,CD8,求BD的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級甲、乙兩班各有學(xué)生50人,為了了解這兩個班學(xué)生身體素質(zhì)情況,進行了抽樣調(diào)查,過程如下,請補充完整.

(1)收集數(shù)據(jù)

從甲、乙兩個班各隨機抽取10名學(xué)生進行身體素質(zhì)測試,測試成績(百分制)如下:

甲班65 75 75 80 60 50 75 90 85 65

乙班90 55 80 70 55 70 95 80 65 70

(2)整理描述數(shù)據(jù)

按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

在表中:m= ,n=

(3)分析數(shù)據(jù)

①兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如表所示:

在表中:x= ,y=

②若規(guī)定測試成績在80分(含80分)以上的敘述身體素質(zhì)為優(yōu)秀,請估計乙班50名學(xué)生中身體素質(zhì)為優(yōu)秀的學(xué)生有 人.

③現(xiàn)從甲班指定的2名學(xué)生(11女),乙班指定的3名學(xué)生(21女)中分別抽取1名學(xué)生去參加上級部門組織的身體素質(zhì)測試,用樹狀圖和列表法求抽到的2名同學(xué)是11女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張老師元旦節(jié)期間到武商眾圓商場購買一臺某品牌筆記本電腦,恰逢商場正推出迎元旦促銷打折活動,具體優(yōu)惠情況如表:

購物總金額(原價)

折扣

不超過5000元的部分

九折

超過5000元且不超過10000元的部分

八折

超過10000元且不超過20000元的部分

七折

……

……

例如:若購買的商品原價為15000元,實際付款金額為:

5000×90%+100005000×80%+1500010000×70%12000元.

1)若這種品牌電腦的原價為8000/臺,請求出張老師實際付款金額;

2)已知張老師購買一臺該品牌電腦實際付費5700元.

①求該品牌電腦的原價是多少元/臺?

②若售出這臺電腦商場仍可獲利14%,求這種品牌電腦的進價為多少元/臺?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面推理過程:

如圖,已知∠1 =∠2,∠B =∠C,可推得ABCD.理由如下:

∵∠1 =∠2(已知),

且∠1 =∠CGD______________________ ),

∴∠2 =∠CGD(等量代換).

CEBF___________________________).

∴∠ =∠C__________________________).

又∵∠B =∠C(已知),

∴∠ =∠B(等量代換).

ABCD________________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理a2+b2=c2本身就是一個關(guān)于a,b,c的方程,滿足這個方程的正整數(shù)解(a,b,c)通常叫做勾股數(shù)組.畢達(dá)哥拉斯學(xué)派提出了一個構(gòu)造勾股數(shù)組的公式,根據(jù)該公式可以構(gòu)造出如下勾股數(shù)組:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股數(shù)組可以發(fā)現(xiàn),4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面規(guī)律,第5個勾股數(shù)組為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,鐵路上A,B兩點相距25km,C,D為兩莊,DAABA,CBABB,已知DA=15km,CB=10km,現(xiàn)在要在鐵路AB上建一個土特產(chǎn)品收購站E,使得C,D兩村到E站的距離相等.問:

(1)在離A站多少km處?

(2)判定三角形DEC的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)觀察推理:如圖1,△ABC中,∠ACB=90°,AC=BC,直線l過點C,點A、B在直線l同側(cè),BDl,AEl,垂足分別為D、E.

求證:△AEC≌△CDB;

2)類比探究:如圖2,RtABC中,∠ACB=90°,AC=6,將斜邊AB繞點A逆時針旋轉(zhuǎn)90°AB,連接B,C,求△AB,C的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中秋節(jié)臨近,某商場決定開展“金秋十月,回饋顧客”的讓利活動,對部分品牌月餅進行打折銷售,其中甲品牌月餅打八折,乙品牌月餅打七五折.已知打折前,買盒甲品牌月餅和盒乙品牌月餅需元;打折后,買盒甲品牌月餅和盒乙品牌月餅需.

1)打折前甲、乙兩種品牌月餅每盒分別為多少元?

2)幸福敬老院需購買甲品牌月餅盒,乙品牌月餅盒,問打折后購買這批月餅比不打折節(jié)省了多少錢?

查看答案和解析>>

同步練習(xí)冊答案