【題目】如圖所示,直線AB交CD于點(diǎn)O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠BOE=4∶1,則∠AOF等于( )
A. 130°
B. 120°
C. 110°
D. 100°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(11·西寧)(本小題滿分7分)給出三個(gè)整式a2,b2和2ab.
(1)當(dāng)a=3,b=4時(shí),求a2+b2+2ab的值;
(2)在上面的三個(gè)整式中任意選擇兩個(gè)整式進(jìn)行加法或減法運(yùn)算,使所得的多項(xiàng)式能夠因式分解.請(qǐng)寫也你所選的式子及因式分解的過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,剪兩張對(duì)邊平行的紙條,隨意交叉疊放在一起,轉(zhuǎn)動(dòng)其中的一張,重合的部分構(gòu)成了一個(gè)四邊形,這個(gè)四邊形是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠BOC=60°,OF平分∠BOC.若AO⊥BO,OE平分∠AOC,則∠EOF的度數(shù)是( )
A. 45°
B. 15°
C. 30°或60°
D. 45°或15°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(﹣1,0),(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn)A,.B 的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,CD.
(1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABDC;
(2) 在y軸上是否存在一點(diǎn)P,連接PA,PB,使S三角形PAB=S四邊形ABDC?若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,取兩根木條a、b,將它們釘在一起,并把它們想象成兩條直線,就得到一個(gè)相交線的模型.你能說出其中的一些鄰補(bǔ)角與對(duì)頂角嗎??jī)筛緱l所成的角中,如果∠α=35°,其它三個(gè)角各等于多少度?如果∠α等于90°,115°,m°呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(a,0)(a>0),點(diǎn)C是y軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)C在y軸上移動(dòng)時(shí),始終保持△ACP是等邊三角形,當(dāng)點(diǎn)C移動(dòng)到點(diǎn)O時(shí),得到等邊△AOB(此時(shí)點(diǎn)P與點(diǎn)B重合).
(1)點(diǎn)C在移動(dòng)的過程中,當(dāng)?shù)冗吶切?/span>ACP的頂點(diǎn)P在第三象限時(shí)(如圖所示),求證:△AOC≌△ABP;
(2)若點(diǎn)P在第三象限,BP交x軸于點(diǎn)E,且∠ACO=20°,求∠PAE的度數(shù)和E點(diǎn)的坐標(biāo);
(3)若∠APB=30°,則點(diǎn)P的橫坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰直角△ABC,點(diǎn)P是斜邊BC上一點(diǎn)(不與B,C重合),PE是△ABP的外接圓⊙O的直徑
(1)求證:△APE是等腰直角三角形;
(2)若⊙O的直徑為2,求 的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為17cm,弦AB∥CD,AB=30cm,CD=16cm,圓心O位于AB,CD的上方,求AB和CD的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com