在矩形ABCD中,點E在BC邊上,過E作EF⊥AC于F,G為線段AE的中點,連接BF、FG、GB.設(shè)=k.
(1)證明:△BGF是等腰三角形;
(2)當(dāng)k為何值時,△BGF是等邊三角形?
(3)我們知道:在一個三角形中,等邊所對的角相等;反過來,等角所對的邊也相等.事實上,在一個三角形中,較大的邊所對的角也較大;反之也成立.
利用上述結(jié)論,探究:當(dāng)△BGF分別為銳角、直角、鈍角三角形時,k的取值范圍.

【答案】分析:(1)根據(jù)直角三角形斜邊上的中線等于斜邊的一半就可以得出BG=FG,從而得出結(jié)論;
(2)當(dāng)△BGF為等邊三角形時由等邊三角形的性質(zhì)可以得出∠BAC=30°,根據(jù)銳角三角函數(shù)值就可以求出k的值;
(3)根據(jù)(1)(2)的結(jié)論課得出△BGF是等腰三角形和∠BAC=∠BGF,根據(jù)∠BGF的大小分三種情況討論就可以求出結(jié)論.
解答:解:(1)證明:∵EF⊥AC于點F,
∴∠AFE=90°
∵在Rt△AEF中,G為斜邊AE的中點,

在Rt△ABE中,同理可得
∴GF=GB,
∴△BGF為等腰三角形;

(2)當(dāng)△BGF為等邊三角形時,∠BGF=60°
∵GF=GB=AG,
∴∠BGE=2∠BAE,∠FGE=2∠CAE
∴∠BGF=2∠BAC,
∴∠BAC=30°,
∴∠ACB=60°,
,
∴當(dāng)k=時,△BGF為等邊三角形;

(3)由(1)得△BGF為等腰三角形,由(2)得∠BAC=∠BGF,
∴當(dāng)△BGF為銳角三角形時,∠BGF<90°,
∴∠BAC<45°,
∴AB>BC,
∴k=>1;
當(dāng)△BGF為直角三角形時,∠BGF=90°,
∴∠BAC=45°
∴AB=BC,
∴k==1;
當(dāng)△BGF為鈍角三角形時,∠BGF>90°,
∴∠BAC>45°
∴AB<BC,
∴k=<1;
∴0<k<1.
點評:本題考查了直角三角形斜邊上的中線等于斜邊的一半的運用,等腰三角形的判定定理的運用,外角與內(nèi)角的關(guān)系的運用,分類討論思想在實際問題的運用,解答時靈活運用直角三角形的性質(zhì)及外角與內(nèi)角的關(guān)系是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

1、如圖,在矩形ABCD中,點E是BC上一點,AE=AD,DF⊥AE,垂足為F.線段DF與圖中的哪一條線段相等?先將你猜想出的結(jié)論填寫在下面的橫線上,然后再加以證明.即DF=
AB
.(寫出一條線段即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖所示,在矩形ABCD中,點E在BC上,AE=AD,DF⊥AE于F,若AB=3,BC=5,則四邊形DFEC的面積是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,點E,F(xiàn)分別在邊AD,BC上,BE⊥EF,AB=6cm,AD=11cm(其中AE>DE),DF=4cm,求BE的長.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,點E、F、G、H分別在邊AB、BC、CD、DA上,點P在矩形ABCD內(nèi),若AB=4,BC=6,AE=CG=3,BF=DH=4,四邊形AEPH的面積為5,求四邊形PFCG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•泰州)如圖,在矩形ABCD中,點P在邊CD上,且與C、D不重合,過點A作AP的垂線與CB的延長線相交于點Q,連接PQ,M為PQ中點.
(1)求證:△ADP∽△ABQ;
(2)若AD=10,AB=20,點P在邊CD上運動,設(shè)DP=x,BM2=y,求y與x的函數(shù)關(guān)系式,并求線段BM的最小值;
(3)若AD=10,AB=a,DP=8,隨著a的大小的變化,點M的位置也在變化.當(dāng)點M落在矩形ABCD外部時,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案