精英家教網(wǎng)如圖,直線AB過x軸上的點A(2,0),且與拋物線y=ax2相交于B、C兩點,B點坐標為(1,1).
(1)求直線和拋物線所表示的函數(shù)表達式;
(2)在拋物線上是否存在一點D,使得S△OAD=S△OBC?若不存在,說明理由;若存在,請求出點D的坐標,與同伴交流.
分析:(1)已知直線AB經(jīng)過A(2,0),B(1,1),設直線表達式為y=ax+b,可求直線解析式;將B(1,1)代入拋物線y=ax2可求拋物線解析式;
(2)已知A,B,C三點坐標,根據(jù)作差法可求△OBC的面積,在△DOA中,已知面積和底OA,可求OA上的高,即D點縱坐標,代入拋物線解析式求橫坐標,得出D點坐標.
解答:解:(1)設直線表達式為y=ax+b.
∵A(2,0),B(1,1)都在y=ax+b的圖象上,
0=2a+b
1=a+b

∴直線AB的表達式y(tǒng)=-x+2.
∵點B(1,1)在y=ax2的圖象上,
∴a=1,其表達式為y=x2

(2)∵
y=x2
y=-x+2
,
解得
x=-2
y=4
x=1
y=1

∴點C坐標為(-2,4),設D(a,a2).
∴S△OAD=
1
2
|OA|•|yD|=
1
2
×2•a2=a2
∴S△BOC=S△AOC-S△OAB=
1
2
×2×4-
1
2
×2×1=3.
∵S△BOC=S△OAD,
∴a2=3,
即a=±
3

∴D點坐標為(
3
,3),(-
3
,3).
點評:本題考查了一次函數(shù)、二次函數(shù)解析式的求法,要求會用點的坐標表示三角形的面積,從而求出符合條件的點坐標.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,直線AB過x軸上的點A(2,0),且與拋物線y=ax2相交于B、C兩點,已知點B的坐精英家教網(wǎng)標是(1,1),
(1)求直線AB和拋物線所表示的函數(shù)解析式;
(2)如果在第一象限,拋物線上有一點D,使得S△OAD=S△OBC,求這時D點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線AB過x軸上的點B(4,0),且與拋物線y=ax2交于A、C兩點,已知A(2,2).
(1)求直線AB的函數(shù)解析式;
(2)求拋物線的函數(shù)解析式;
(3)如果拋物線上有點D,使S△OBD=S△OAC,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年湖南省邵陽市中考數(shù)學模擬試卷(六)(解析版) 題型:解答題

如圖,直線AB過x軸上的點A(2,0),且與拋物線y=ax2相交于B、C兩點,B點坐標為(1,1).
(1)求直線和拋物線所表示的函數(shù)表達式;
(2)在拋物線上是否存在一點D,使得S△OAD=S△OBC?若不存在,說明理由;若存在,請求出點D的坐標,與同伴交流.

查看答案和解析>>

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2000•蘭州)如圖,直線AB過x軸上的點A(2,0),且與拋物線y=ax2相交于B、C兩點,已知點B的坐標是(1,1),
(1)求直線AB和拋物線所表示的函數(shù)解析式;
(2)如果在第一象限,拋物線上有一點D,使得S△OAD=S△OBC,求這時D點坐標.

查看答案和解析>>

同步練習冊答案