【題目】如圖,在樓頂點處觀察旗桿測得旗桿頂部的仰角為30°,旗桿底部的俯角為45°.已知樓高m,則旗桿的高度為___.(結(jié)果保留根號)
【答案】
【解析】
過點A作AE⊥CD于點E,由平行線的性質(zhì)可知∠ADB=∠EAD=45°,故可得出AB=BD=9m,再根據(jù)正方形的判定定理得出四邊形ABDE是正方形,故可得出AE=BD,由銳角三角函數(shù)的定義求出CE的長,進而可得出結(jié)論.
解:如圖,過點A作AE⊥CD于點E,
∵AE∥BD,
∴∠ADB=∠EAD=45°,
∴AB=BD=9m.
∵AB⊥BD,ED⊥BD,AE⊥CD,AB=BD,
∴四邊形ABDE是正方形,
∴AE=BD=AB=DE=9m.
在Rt△ACE中,
∵∠CAE=30°,
∴CE=AEtan30°=9×=3,
∴CD=CE+DE=(3+9)m.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,以點B為圓心,BC長為半徑畫弧,交邊AB與點D,以A為圓心,AD長為半徑畫弧,交邊AC于點E,連接CD.
(1)若∠A=28°,求∠ACD的度數(shù);
(2)設(shè)BC=a,AC=b.
①線段AD的長是方程的一個根嗎?為什么?
②若AD=EC,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AE是BC邊上的高線,BM平分∠ABC交AE于點M,經(jīng)過B,M 兩點的⊙O交BC于點G,交AB于點F ,F(xiàn)B為⊙O的直徑.
(1)求證:AM是⊙O的切線
(2)當BE=3,cosC=時,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB=AC,CO的延長線交AB于點D.
(1)求證:AO平分∠BAC;
(2)若BC=6,sin∠BAC=,求AC和CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,AD=,將矩形ABCD繞點B按順時針方向旋轉(zhuǎn)后得到矩形EBGF,此時恰好四邊形AEHB為菱形,連接CH交FG于點M,則HM=( 。
A. B. 1 C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小帥家的新房子剛裝修完,便遇到罕見的大雨,于是他向爸爸提議給窗戶安上遮雨罩.如圖1所示的是他了解的一款雨罩.它的側(cè)面如圖2所示,其中頂部圓弧AB的圓心O在整直邊緣D上,另一條圓弧BC的圓心O.在水平邊緣DC的廷長線上,其圓心角為90°,BE⊥AD于點E,則根據(jù)所標示的尺寸(單位:c)可求出弧AB所在圓的半徑AO的長度為_____cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某消防隊在一居民樓前進行演習,消防員利用云梯成功救出點B處的求救者后,又發(fā)現(xiàn)點B正上方點C處還有一名求救者.在消防車上點A處測得點B和點C的仰角分別是45°和65°,點A距地面2.5米,點B距地面10.5米.為救出點C處的求救者,云梯需要繼續(xù)上升的高度BC約為多少米?(結(jié)果保留整數(shù).參考數(shù)據(jù):tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點,以BD為直徑的⊙O經(jīng)過點E,且交BC于點F
(1)求證:AC是⊙O的切線;
(2)若CF=2,CE=4,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com