如圖,若正△A1B1C1內(nèi)接于正△ABC的內(nèi)切圓,則△A1B1C1與△ABC的面積的比值為(  )
分析:由于△ABC、△A1B1C1都是正三角形,因此它們的外心與內(nèi)心重合;可過O分別作AB、A1B1的垂線,連接OA、OA1;在構(gòu)建的含特殊角的直角三角形中,用⊙O的半徑分別表示出AB、A1B1的長(zhǎng),進(jìn)而可求出它們的比例關(guān)系,進(jìn)而得出△A1B1C1與△ABC的面積的比值.
解答:解:設(shè)圓心為O,AB與圓相切于點(diǎn)D,連接AO,DO,
∵△A1B1C1和△ABC都是正三角形,
∴它們的內(nèi)心與外心重合;
如圖:設(shè)圓的半徑為R;
Rt△OAD中,∠OAD=30°,OD=R;
AO=OD•
DO
tan∠OAD
=
3
R,
即AB=2
3
R;
同理可求得:A1B1=
3
R,
A1B1
AB
=
3
R
2
3
R
=
1
2
,
則△A1B1C1與△ABC的面積的比值為:(
1
2
2=
1
4

故選:C.
點(diǎn)評(píng):此題主要考查了等邊三角形的性質(zhì)、相似三角形的性質(zhì)以及正多邊形的內(nèi)外心重合等知識(shí),得出
A1B1
AB
=
1
2
是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖(1),△ABC是正三角形,曲線DA1B1C1…叫做“正三角形ABC的漸開線”,其中
A1C
,
A1B1
B1C1
,…依次連接,它們的圓心依次按A,B,C循環(huán).則曲線CA1B1C1叫做正△ABC的1重漸開線,曲線CA1B1C1A2B2C2叫做正△ABC的2重漸開線,…,曲線CA1B1C1A2…AnBnCn叫做正△ABC的n重漸開線.如圖(2),四邊形ABCD是正方形,曲線CA1B1C1D1…叫做“正方形ABCD的漸開線”,其中
A1D
,
A1B1
B1C1
,
C1D1
…依次連接,它們的圓心依次按A,B,C,D循環(huán).則曲線DA1B1C1D1叫做正方形ABCD的1重漸開線,…,曲線DA1B1C1D1A2…AnBnCnDn叫做正方形ABCD的n重漸開線.依次下去,可得正n形的n重漸開線(n≥3).
若AB=1,則正方形的2重漸開線的長(zhǎng)為18π;若正n邊形的邊長(zhǎng)為1,則該正n邊形的n重漸開線的長(zhǎng)為
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:鼓樓區(qū)2008年第一次模擬調(diào)研測(cè)試、九年級(jí)數(shù)學(xué)試卷 題型:044

如圖1,以矩形OABC的兩邊OA和OC所在的直線為x軸、y軸建立平面直角坐標(biāo)系,A點(diǎn)的坐標(biāo)為(3,0),C點(diǎn)的坐標(biāo)為(0,4).將矩形OABC繞O點(diǎn)逆時(shí)針旋轉(zhuǎn),使B點(diǎn)落在y軸的正半軸上,旋轉(zhuǎn)后的矩形為OA1B1C1,BC、A1B1相交于點(diǎn)M.

(1)點(diǎn)B1的坐標(biāo)為________,線段B1C的長(zhǎng)為________

(2)將圖1中的矩形OA1B1C1沿y軸向上平移,如圖2,矩形PA2B2C2是平移過程中的某一位置,BC,A2B2相交于點(diǎn)M1,點(diǎn)P運(yùn)動(dòng)到C點(diǎn)停止.

①設(shè)點(diǎn)P運(yùn)動(dòng)的距離為x,矩形PA2B2C2與原矩形OABC重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;

②是否存在一條直線l,如果將坐標(biāo)紙沿直線l折疊,恰好使點(diǎn)A和B2重合,且點(diǎn)A2和B重合,若存在,請(qǐng)直接寫出直線l的關(guān)系式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案