【題目】兩棟居民樓之間的距離CD=30米,樓ACBD均為10層,每層樓高3米.

(1)上午某時刻,太陽光線GB與水平面的夾角為30°,此刻B樓的影子落在A樓的第幾層?

(2)當太陽光線與水平面的夾角為多少度時,B樓的影子剛好落在A樓的底部.

【答案】(1)此刻B樓的影子落在A樓的第5層;(2)當太陽光線與水平面的夾角為45度時,B樓的影子剛好落在A樓的底部.

【解析】(1)延長BG,交AC于點F,過F作FH⊥BD于H,利用直角三角形的性質和三角函數(shù)解答即可;

(2)連接BC,利用利用直角三角形的性質和三角函數(shù)解答即可.

(1)延長BG,交AC于點F,過F作FH⊥BD于H,

由圖可知,F(xiàn)H=CD=30m,

∵∠BFH=∠α=30°,

在Rt△BFH中,BH=FH=10≈17.32,

≈5.8,

答:此刻B樓的影子落在A樓的第5層;

(2)連接BC,∵BD=3×10=30=CD,

∴∠BCD=45°,

答:當太陽光線與水平面的夾角為45度時,B樓的影子剛好落在A樓的底部.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,EBC邊上一點,且AB=AE

1)求證:△ABC≌△EAD;

2)若AE平分∠DAB,∠EAC=25°,求∠AED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC 中,∠ACB=90°AC=6cm,BC=8cm,點 P A 點出發(fā)沿 A-C-B 路徑向終點運動,終點為 B點;點 Q B 點出發(fā)沿 B-C-A 路徑向終點運動,終點為 A 點,點 P Q 分別以 1cm/s xcm / s 的運動速度 同時開始運動,兩點都要到相應的終點時才能停止運動,在某時刻,分別過 P Q PE⊥ l E,QF⊥ l F.

(1)如圖,當 x 2 時,設點 P 運動時間為 ts ,當點 P AC 上,點 Q BC 上時:

用含 t 的式子表示 CP CQ,則 CP= cm,CQ= cm;

t 2 ,PEC QFC 全等嗎?并說明理由;

(2)請問: x 3 時,PEC QFC 有沒有可能全等?若能,直接寫出符合條件的 t 的值;若不能,請說明 理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點在直線上,點在直線上,

如圖①,若,判斷的位置關系,并說明理由;

圖②,在的結論下,上有一點,且,判斷的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知RtABC中,∠B=90°,A=60°,AC=2+4,點M、N分別在線段AC、AB上,將ANM沿直線MN折疊,使點A的對應點D恰好落在線段BC上,當DCM為直角三角形時,折痕MN的長為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明家需要用鋼管做防盜窗,按設計要求,其中需要長為 0.8m2.5m 且粗細相同的鋼管分別為 100 根,32 根,并要求這些用料不能是焊接而成的.現(xiàn)鋼材市場的這種規(guī)格的鋼管每根為 6m

1)試問一根 6m 長的圓鋼管有哪些裁剪方法呢?請?zhí)顚懴驴眨ㄓ嗔献鲝U).

方法①:當只裁剪長為 0.8m 的用料時,最多可剪 根;

方法②:當先剪下 1 2.5m 的用料時,余下部分最多能剪 0.8m 長的用料 根;

方法③:當先剪下 2 2.5m 的用料時,余下部分最多能剪 0.8m 長的用料 根.

2)分別用(1)中的方法②和方法③各裁剪多少根 6m 長的鋼管,才能剛好得到所需要的相應數(shù)量的材料?

3)試探究:除(2)中方案外,在(1)中還有哪兩種方法聯(lián)合,所需要 6m 長的鋼管與(2 中根數(shù)相同?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線ACBD交于點O.過點CBD的平行線,過點DAC的平行線,兩直線相交于點E.

(1)求證:四邊形OCED是矩形;

(2)若CE=1,DE=2,ABCD的面積是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是⊙O外的一點,PA、PB是⊙O的兩條切線,A、B是切點,POAB于點F,延長BO交⊙O于點C,交PA的延長交于點Q,連結AC.

(1)求證:ACPO;

(2)設DPB的中點,QDAB于點E,若⊙O的半徑為3,CQ=2,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點A(m,3)、B(﹣6,n),與x軸交于點C.

(1)求一次函數(shù)y=kx+b的關系式;

(2)結合圖象,直接寫出滿足kx+b>的x的取值范圍;

(3)若點P在x軸上,且SACP=SBOC,求點P的坐標.

查看答案和解析>>

同步練習冊答案