【題目】如圖1,拋物線()軸交于點和點,與軸交于點

1)求拋物線解析式和點坐標;

2)在軸上有一動點,過點軸的垂線交直線于點,交拋物線于點.當點位于第一象限圖象上,連接,求面積的最大值及此時點的坐標;

3)如圖2,點關(guān)于軸的對稱點為,連接

①點是線段上一點(不與點重合),點是線段上一點(不與點重合),則兩條線段之和的最小值為    ;

②將繞點逆時針旋轉(zhuǎn)(),當點的對應(yīng)點落在的邊所在直線上時,則此時點的對應(yīng)點的坐標為    

【答案】1,B0,2);(24,M2,3);(3)①;②

【解析】

1)將代入,可求出的值,將的值代入即得到拋物線解析式,令,求,得點坐標;

2)待定系數(shù)法求出直線的解析式,設(shè)點,將表示成的二次函數(shù),配方成頂點式即可求得面積的最大值及此時點的坐標;

3)第①題求的最小值利用對稱進行轉(zhuǎn)化,應(yīng)用兩點之間線段最短垂線段最短可以得到的最小值即為點到直線的距離;第②題在逆時針旋轉(zhuǎn)過程中,按照依次落在直線、、上分類討論.

解:(1)將代入,得,

解得

拋物線解析式為,

,得,

;

2)如圖1,過點,設(shè),

設(shè)直線的解析式為,將,分別代入得

解得,

直線的解析式為,

,

,,

時,的最大值

此時,點的坐標為;

3)①如圖2,連接,則,只有當、、三點在同一直線上,且時,的值最小,

過點,交軸于,,,

關(guān)于軸對稱

,,

,即的最小值,

故答案為

②如圖3,點落在直線上,

在拋物線中,令,解得

,,,

,

由旋轉(zhuǎn)知,,,,,

設(shè)軸于,過軸于

,即,

,解得

,即,

,

,即

,

;

如圖4,點落在直線上,,

的對應(yīng)點落在軸上,由旋轉(zhuǎn)知:△

,

;

如圖5,點落在直線上,過軸于,作軸于,作,

,

,

,,

在△ADQ和△中,

,

∴△ADQ≌△AAS),

,

,

,

故答案為:.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線P與拋物線Q在同一平面直角坐標系中(其中at均為常數(shù),且t0),已知點A13)為拋物線P上一點,過點A作直線lx軸,與拋物線P交于另一點B

1)求a的值及點B的坐標;

2)當拋物線Q經(jīng)過點A

①求拋物線Q的解析式;

②設(shè)直線l與拋物線Q的另一交點為C,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】事件發(fā)生的可能性有大有小,請你把下列事件發(fā)生可能性的大小按由小到大的順序排列起來__________.(只排序號)

①書包里有12本不同科目的教科書,隨手摸出一本,恰好是數(shù)學(xué)書;

②花2元買了一張彩票,就中了500萬大獎;

③我拋了兩次硬幣,都正面向上;

④若,則互為相反數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】201798—10日,第六屆翼裝飛行世界錦標賽在我市天門山風景區(qū)隆重舉行,來自全球11個國家的16名選手參加了激烈的角逐.如圖,某選手從離水平地面1000米高的A點出發(fā)(AB=1000米),沿俯角為的方向直線飛行1400米到達D點,然后打開降落傘沿俯角為的方向降落到地面上的C點,求該選手飛行的水平距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】機動車行駛到斑馬線要禮讓行人等交通法規(guī)實施后,某校數(shù)學(xué)課外實踐小組就對這些交通法規(guī)的了解情況在全校隨機調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實踐小組把此次調(diào)查結(jié)果整理并繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.

請結(jié)合圖中所給信息解答下列問題:

(1)填空:本次共調(diào)查_____名學(xué)生;扇形統(tǒng)計圖中C所對應(yīng)扇形的圓心角度數(shù)是_____°

(2)請直接補全條形統(tǒng)計圖;

(3)填空:扇形統(tǒng)計圖中,m的值為_____;

(4)該校共有500名學(xué)生,根據(jù)以上信息,請你估計全校學(xué)生中對這些交通法規(guī)非常了解的約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠ABC=90°,∠BAC30°,將ABC繞點A順時針旋轉(zhuǎn)一定的角度得到AED,點BC的對應(yīng)點分別是E、D.

(1)如圖1,當點E恰好在AC上時,求∠CDE的度數(shù);

(2)如圖2,若=60°時,點F是邊AC中點,求證:四邊形BFDE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知O為圓錐的頂點,M為圓錐底面上一點,點POM上.一只蝸牛從P點出發(fā),繞圓錐側(cè)面爬行,回到P點時所爬過的最短路線的痕跡如圖所示.若沿OM將圓錐側(cè)面剪開并展開,所得側(cè)面展開圖是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家發(fā)改委、工業(yè)和信息化部、財政部公布了節(jié)能產(chǎn)品惠民工程,公交公司積極響應(yīng)將舊車換成節(jié)能環(huán)保公交車,計劃購買A型和B型兩種環(huán)保型公交車10輛,其中每臺的價格、年載客量如表:

A

B

價格(萬元/臺)

x

y

年載客量/萬人次

60

100

若購買A型環(huán)保公交車1輛,B型環(huán)保公交車2輛,共需400萬元;若購買A型環(huán)保公交車2輛,B型環(huán)保公交車1輛,共需350萬元.

1)求x、y的值;

2)如果該公司購買A型和B型公交車的總費用不超過1200萬元,且確保10輛公交車在該線路的年載客量總和不少于680萬人次,問有哪幾種購買方案?

3)在(2)的條件下,哪種方案使得購車總費用最少?最少費用是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場為方便消費者購物,準備將原來的階梯式自動扶梯改造成斜坡式自動扶梯,如圖,已知原階梯式自動扶梯AB的長為6m,坡角∠ABE45°,改造后的斜坡自動扶梯坡角∠ACB15°,求改造后的斜坡式自動扶梯AC的長,(精確到0.1m,參考數(shù)據(jù);sin15°≈0.26,cos15°≈0.97tan15°≈0,27

查看答案和解析>>

同步練習冊答案