平行于直線的直線不經(jīng)過第四象限,且與函數(shù)和圖象交于點,過點軸于點,軸于點,四邊形的周長為8.求直線的解析式.

 

【答案】

y=x+2

【解析】本題考查了反比例函數(shù)的綜合應用. 設A點的坐標為(x,y),四邊形ABOC的周長為8,可以得到2x+2y=8,則A的坐標為(x,4-x),把A點代入y=,就得到關(guān)于x的方程,求出x的值.根據(jù)直線l平行與直線y=x,則一次項系數(shù)相同,因而可以設定直線l的解析式為y=x+b(b≥0),把A點的坐標代入就可以求出b的值,得到函數(shù)解析式.

設A點的坐標為(x,y),由題意得2x+2y=8,

整理得y= 4-x   即A的坐標為(x,4-x),把A點代入

中,解得x=1或x=3

由此得到A點的坐標是(1,3)或(3,1)

又由題意可設定直線的解析式為y=x+b(b≥0)

把(1,3)點代入y=x+b,解得 b=2

把(3,1)點代入y=x+b,解得 b=-2,不合要求,舍去

所以直線的解析式為y=x+2

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

16、下列命題中假命題的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)數(shù)學來源于生活又服務于生活,利用數(shù)學中的幾何知識可以幫助我們解決許多實際問題.李明準備與朋友合伙經(jīng)營一個超市,經(jīng)調(diào)查發(fā)現(xiàn)他家附近有兩個大的居民區(qū)A、B,同時又有相交的兩條公路,李明想把超市建在到兩居民區(qū)的距離、到兩公路距離分別相等的位置上,繪制了如圖一的居民區(qū)和公路的位置圖.聰明的你一定能用所學的數(shù)學知識幫助李明在圖上確定超市的位置!請用尺規(guī)作圖確定超市P的位置.(寫出已知、求作,作圖不寫作法,但要求保留作圖痕跡.)
(2)如圖二,O為平行四邊形ABCD的對角線AC的中點,過點O作一條直線分別與AB、CD交于點M、N,點E、F在直線MN上,且OE=OF.
①圖中共有幾對全等三角形,請把它們都寫出;
②求證:∠MAE=∠NCF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

(1)數(shù)學來源于生活又服務于生活,利用數(shù)學中的幾何知識可以幫助我們解決許多實際問題.李明準備與朋友合伙經(jīng)營一個超市,經(jīng)調(diào)查發(fā)現(xiàn)他家附近有兩個大的居民區(qū)A、B,同時又有相交的兩條公路,李明想把超市建在到兩居民區(qū)的距離、到兩公路距離分別相等的位置上,繪制了如圖一的居民區(qū)和公路的位置圖.聰明的你一定能用所學的數(shù)學知識幫助李明在圖上確定超市的位置!請用尺規(guī)作圖確定超市P的位置.(寫出已知、求作,作圖不寫作法,但要求保留作圖痕跡.)
(2)如圖二,O為平行四邊形ABCD的對角線AC的中點,過點O作一條直線分別與AB、CD交于點M、N,點E、F在直線MN上,且OE=OF.
①圖中共有幾對全等三角形,請把它們都寫出;
②求證:∠MAE=∠NCF.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)數(shù)學來源于生活又服務于生活,利用數(shù)學中的幾何知識可以幫助我們解決許多實際問題.李明準備與朋友合伙經(jīng)營一個超市,經(jīng)調(diào)查發(fā)現(xiàn)他家附近有兩個大的居民區(qū)A、B,同時又有相交的兩條公路,李明想把超市建在到兩居民區(qū)的距離、到兩公路距離分別相等的位置上,繪制了如圖一的居民區(qū)和公路的位置圖.聰明的你一定能用所學的數(shù)學知識幫助李明在圖上確定超市的位置!請用尺規(guī)作圖確定超市P的位置.(寫出已知、求作,作圖不寫作法,但要求保留作圖痕跡.)
(2)如圖二,O為平行四邊形ABCD的對角線AC的中點,過點O作一條直線分別與AB、CD交于點M、N,點E、F在直線MN上,且OE=OF.
①圖中共有幾對全等三角形,請把它們都寫出;
②求證:∠MAE=∠NCF.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

解:(1)點C的坐標為.

∵ 點A、B的坐標分別為,

            ∴ 可設過A、B、C三點的拋物線的解析式為.   

            將代入拋物線的解析式,得.

            ∴ 過AB、C三點的拋物線的解析式為.

(2)可得拋物線的對稱軸為,頂點D的坐標為   

,設拋物線的對稱軸與x軸的交點為G.

直線BC的解析式為.

設點P的坐標為.

解法一:如圖8,作OPAD交直線BC于點P,

連結(jié)AP,作PMx軸于點M.

OPAD,

∴ ∠POM=∠GAD,tan∠POM=tan∠GAD.

  ∴ ,即.

  解得.  經(jīng)檢驗是原方程的解.

  此時點P的坐標為.

但此時,OMGA.

  ∵

      ∴ OPAD,即四邊形的對邊OPAD平行但不相等,

      ∴ 直線BC上不存在符合條件的點P. - - - - - - - - - - - - - - - - - - - - - 6分

            解法二:如圖9,取OA的中點E,作點D關(guān)于點E的對稱點P,作PNx軸于

N. 則∠PEO=∠DEA,PE=DE.

可得△PEN≌△DEG

,可得E點的坐標為.

NE=EG=, ON=OE-NE=NP=DG=.

∴ 點P的坐標為.∵ x=時,,

∴ 點P不在直線BC上.

                   ∴ 直線BC上不存在符合條件的點P .

 


(3)的取值范圍是.

查看答案和解析>>

同步練習冊答案