使式子
x+1
與式子
1
x
都有意義的x的取值范圍是(  )
分析:分別根據(jù)二次根式及分式有意義的條件列出關于x的不等式組,求出x的取值范圍即可.
解答:解:∵式子
x+1
與式子
1
x
都有意義,
x+1≥0
x>0
,
解得x>0.
故選A.
點評:本題考查的是二次根式及分式有意義的條件,先根據(jù)題意列出關于x的不等式組是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

某通信器材公司銷售一種市場需求較大的新型通訊產(chǎn)品.已知每件產(chǎn)品的進價為40元,每年銷售該種產(chǎn)品的總開支(不含進價)總計120萬元.在銷售過程中發(fā)現(xiàn),年銷售量y(萬件)與銷售單價x(元)之間存在著一次函數(shù)關系y=
1
20k
x+b
,其中整數(shù)k使式子
k+1
+
1-k
有意義.經(jīng)測算,銷售單價60元時,年銷售量為50000件.
(1)求出這個函數(shù)關系式;
(2)試寫出該公司銷售該種產(chǎn)品的年獲利z(萬元)關于銷售單價x(元)的函數(shù)關系式(年獲利=年銷售額-年銷售產(chǎn)品總進價-年總開支).當銷售單價x為何值時,年獲利最大并求這個最大值;
(3)若公司希望該種產(chǎn)品一年的銷售獲利不低于40萬元,借助(2)中函數(shù)的圖象,請你幫助該公司確定銷售單價的范圍.在此情況下,要使產(chǎn)品銷售量最大,你認為銷售單價應定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某數(shù)學興趣小組開展了一次活動,過程如下:
設∠BAC=θ(0°<θ<90°)小棒依次擺放在兩射線之間,并使小棒兩端分別落在兩射線上.
活動一:
如圖甲所示,從點A1開始,依次向右擺放小棒,使小棒與小棒在端點處互相垂直,A1A2為第1根小棒.
數(shù)學思考:
(1)小棒能無限擺下去嗎?答:
 
.(填“能“或“不能”)
(2)設AA1=A1A2=A2A3=1.
①θ=
 
度;
②若記小棒A2n-1A2n的長度為an(n為正整數(shù),如A1A2=a1,A3A4=a2,…),求出此時a2,a3的值,并直接寫出an(用含n的式子表示).
精英家教網(wǎng)
活動二:
如圖乙所示,從點A1開始,用等長的小棒依次向右擺放,其中A1A2為第1根小棒,且A1A2=AA1
數(shù)學思考:
(3)若已經(jīng)向右擺放了3根小棒,則θ1=
 
,θ2=
 
,θ3=
 
(用含θ的式子表示);
(4)若只能擺放4根小棒,求θ的范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,有兩個形狀相同但大小不同的直角三角形ABC和EFG疊放在一起(點A與點E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜邊上的中點,如圖②,若整個△EFG從圖①的位置出發(fā),以1cm/s的速度沿射線AB方向平移,在△EFG平移的同時,點p從△EFG的頂點G出發(fā),以1cm/s的速度在直角邊GF上向點F運動,當點P到達點F時,點P停止運動,△EFG也隨之停止平移,設運動時間為x(s),F(xiàn)G的延長線交AC于H,(不考慮點P與G、F重合的情況)
(1)當x為何值時,OP∥AC?
(2)你能不能用含x的式子來表示四邊形OAHP面積呢?若能,請表示;若不能,請說理由.
(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為13:24?若存在,求出x的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

使式子
x+1
與式子
1
x
都有意義的x的取值范圍是( 。
A.x>0B.x≥0C.x≥-1且x≠0D.-1≤x<0

查看答案和解析>>

同步練習冊答案