已知拋物線y=-
23
x2+bx+c
與x軸交于不同的兩點A(x1,0)和B(x2,0),與y軸交于點C,且x1,x2是方程x2-2x-3=0的兩個根(x1<x2).
(1)求拋物線的解析式;
(2)過點A作AD∥CB交拋物線于點D,求四邊形ACBD的面積;
(3)如果P是線段AC上的一個動點(不與點A、C重合),過點P作平行于x軸的直線l交BC于點Q,那么在x軸上是否存在點R,使得△PQR為等腰直角三角形?若存在,求出點R的坐標;若不存在,請說明理由.
分析:(1)可通過解方程求出A、B的坐標,代入拋物線中即可求出二次函數(shù)的解析式.(由于A、B的坐標是方程的兩個根,那么拋物線的解析式其實就是二次項系數(shù)與方程的代數(shù)式部分的乘積).
(2)可將四邊形分成三角形ABC和ABD兩部分求解,已知了AB的長,關(guān)鍵是求出C、D的坐標,根據(jù)拋物線的解析式即可得出C點的坐標.求D點坐標時,可先求出直線BC的解析式,根據(jù)BC∥AD,那么直線AD與直線BC的斜率相同,根據(jù)A點坐標即可求出直線AD的解析式,聯(lián)立拋物線即可求出D點的坐標,然后按上面所說的四邊形的面積求法進行計算即可.
(3)先根據(jù)直線AC、BC的解析式設出P、Q的坐標(由于P、Q的縱坐標相同,因此可設縱坐標,然后根據(jù)直線解析式表示出橫坐標).分三種情況:
①PQ=PR,此時P點縱坐標與PQ的長相等,據(jù)此可求出P點的坐標.進而可求出R的坐標.
②PQ=QR,同①
③PR=QR,R在PQ的垂直平分線上,此時P點的縱坐標是PQ的一半.由此可求出P點的坐標.進而可求出R的坐標.
解答:精英家教網(wǎng)解:(1)解方程x2-2x-3=0,
得x1=-1,x2=3.
∴點A(-1,0),點B(3,0).
-
2
3
×(-1)2+b•(-1)+c=0
-
2
3
×32+b•3+c=0
,
解,得
b=
4
3
c=2

∴拋物線的解析式為y=-
2
3
x2+
4
3
x+2.

(2)∵拋物線與y軸交于點C.
∴點C的坐標為(0,2).
又點B(3,0),可求直線BC的解析式為y=-
2
3
x+2.
∵AD∥CB,
∴設直線AD的解析式為y=-
2
3
x+b′.
又點A(-1,0),
∴b′=-
2
3
,直線AD的解析式為y=-
2
3
x-
2
3

y=-
2
3
x2+
4
3
x+2
y=-
2
3
x-
2
3
,
x1=-1
y1=0
,
x2=4
y2=-
10
3

∴點D的坐標為(4,-
10
3
).
過點D作DD’⊥x軸于D’,DD’=
10
3
,則又AB=4.
∴四邊形ACBD的面積S=
1
2
AB•OC+
1
2
AB•DD’=10
2
3


(3)假設存在滿足條件的點R,設直線l交y軸于點E(0,m),
∵點P不與點A、C重合,
∴0<m<2,
∵點A(-1,0),點C(0,2),
∴可求直線AC的解析式為y=2x+2,
∴點P(
1
2
m-1,m).
∵直線BC的解析式為y=-
2
3
x+2,
∴點Q(-
3
2
m+3,m).
∴PQ=-2m+4.在△PQR中,
①當RQ為底時,過點P作PR1⊥x軸于點R1,則∠R1PQ=90°,PQ=PR1=m.
∴-2m+4=m,
解得m=
4
3
,
∴點P(-
1
3
4
3
),
∴點R1坐標為(-
1
3
,0).
②當RP為底時,過點Q作QR2⊥x軸于點R2,
同理可求,點R2坐標為(1,0).
③當PQ為底時,取PQ中點S,過S作SR3⊥PQ交x軸于點R3,
則PR3=QR3,∠PR3Q=90度.
∴PQ=2R3S=2m.
∴-2m+4=2m,
解,得m=1,
∴點P(-
1
2
,1),點Q(
3
2
,1),可求點R3坐標為(
1
2
,0).
經(jīng)檢驗,點R1,點R2,點R3都滿足條件.
綜上所述,存在滿足條件的點R,它們分別是R1-
1
3
,0),R2(1,0)和點R3
1
2
,0).
點評:本題考查一元二次方程的解法,二次函數(shù)解析式的確定、圖形的面積求法、函數(shù)圖象交點、等腰三角形的判定等知識及綜合應用知識、解決問題的能力.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知拋物線y=-
23
(x+2)2+k與x軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正半軸上,C點在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個根.
(1)求A、B、C三點的坐標;
(2)在平面直角坐標系內(nèi)畫出拋物線的大致圖象并標明頂點坐標;
(3)連AC、BC,若點E是線段AB上的一個動點(與A、B不重合),過E作EF∥AC交BC于F,連CE,設AE=m,△CEF的面積為S,求S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(4)在(3)的基礎上說明S是否存在最大值,并求出此時點E的坐標,判斷此時△BCE的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=x2+kx-
3
4
k2
(k為常數(shù),且k>0).
(1)證明:此拋物線與x軸總有兩個交點;
(2)設拋物線與x軸的兩個交點分別是M、N.
①M、N兩點之間的距離為MN=
 
.(用含k的式子表示)
②若M、N兩點到原點的距離分別為OM、ON,且
1
ON
-
1
OM
=
2
3
,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•金灣區(qū)一模)已知拋物線y=x2+kx-
3
4
k2(k為常數(shù),且k>0).
(1)證明:此拋物線與x軸總有兩個不同的交點;
(2)設拋物線與x軸交于M(x1,0),N(x2,0)兩點,且
1
x1
+
1
x2
=
2
3
,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•金東區(qū)模擬)已知拋物線y=-
2
3
(x+1)(x-3)
與x軸相交于點A,B(A點在B點左邊),點C為拋物線上一個動點,直線y=m(0<m<2)與線段AC,BC分別相交于D,E兩點,在x軸上的點P,使得△DEP為等腰直角三角形,則點P的坐標為
P1(-
1
2
,0),P2(1,0),P3
1
2
,0)
P1(-
1
2
,0),P2(1,0),P3
1
2
,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線經(jīng)過坐標原點O及A(-2
3
,0),其頂點為B(m,3),C是AB中點,點E是直線OC上的一個動點 (點E與點O不重合),點D在y軸上,且EO=ED.
(1)求此拋物線及直線OC的解析式;
(2)當點E運動到拋物線上時,求BD的長;
(3)連接AD,當點E運動到何處時,△AED的面積為
3
3
4
?請直接寫出此時E點的坐標.

查看答案和解析>>

同步練習冊答案