【題目】如圖,已知AB=3,BC=4,將矩形ABCD沿對(duì)角線BD折疊點(diǎn)C落在點(diǎn)E的位置,則AE的長度為( )
A.B.C.3D.
【答案】D
【解析】
利用矩形的性質(zhì)、折疊的性質(zhì),以及勾股定理求出FD,AF的長,再證明△AFE∽△DFB,利用相似三角形的性質(zhì)即可求解.
解: 設(shè)FD=x,則AF=4﹣x,
∵將矩形ABCD沿對(duì)角線BD折疊點(diǎn)C落在點(diǎn)E的位置,
∴∠FBD=∠DBC,BE=BC,
∵矩形ABCD,
∴AD∥BC,AD=BC,
∴∠ADB=∠DBC,BE=AD,
∴∠ADB=∠FBD,
∴FB=FD=x,
在直角△AFB中,x2=(4﹣x)2+32,
解之得,x=,AF=4﹣x=,
∵BE=AD,FB=FD,
∴AF=EF,
∴,
∵∠AFE=∠DFB,
∴△AFE∽△DFB,
∴,
∴,
解得AE=.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某中學(xué)兩座教學(xué)樓中間有個(gè)路燈,甲、乙兩個(gè)人分別在樓上觀察路燈頂端,視線所及如圖①所示.根據(jù)實(shí)際情況畫出平面圖形如圖②,CD⊥DF,AB⊥DF,EF⊥DF,甲從點(diǎn)C可以看到點(diǎn)G處,乙從點(diǎn)E恰巧可以看到點(diǎn)D處,點(diǎn)B是DF的中點(diǎn),路燈AB高5.5米,DF=120米,BG=10.5米,求甲、乙兩人的觀測(cè)點(diǎn)到地面的距離的差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與拋物線交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)是,點(diǎn)B的橫坐標(biāo)是3,則以下結(jié)論:①拋物線的圖象的頂點(diǎn)一定是原點(diǎn);②時(shí),一次函數(shù)與拋物線的函數(shù)值都隨x的增大而增大;③的長度可以等于5;④當(dāng)時(shí),.其中正確的結(jié)論是( )
A.①②③B.①②④C.①③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,中,,,點(diǎn)為邊中點(diǎn),連接,點(diǎn)為的中點(diǎn),線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段,連接,.
(1)如圖1,當(dāng)時(shí),請(qǐng)直接寫出的值;
(2)如圖2,當(dāng)時(shí),(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)寫出正確的結(jié)論,并說明理由;
(3)如圖3,當(dāng)時(shí),請(qǐng)直接寫出的值(用含的三角函數(shù)表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系的坐標(biāo)軸上按如下規(guī)律取點(diǎn):在軸正半軸上,在軸正半軸上,在軸負(fù)半軸上,在軸負(fù)半軸上,在軸正半軸上,......,且......,設(shè)......,有坐標(biāo)分別為,......,.
(1)當(dāng)時(shí),求的值;
(2)若,求的值;
(3)當(dāng)時(shí),直接寫出用含為正整數(shù))的式子表示軸負(fù)半軸上所取點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+500,在銷售過程中銷售單價(jià)不低于成本價(jià),而每件的利潤不高于成本價(jià)的60%.
(1)設(shè)小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.
(2)當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤?每月的最大利潤是多少?
(3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年4月15日傍晚法國地標(biāo)性建筑巴黎圣母院突遭大火吞噬,導(dǎo)致屋頂和主尖塔坍塌,哥特式的玫瑰花窗損毀.為了重建巴黎圣母院,設(shè)計(jì)小組設(shè)計(jì)了一個(gè)由三色玻璃拼成的花窗,如圖所示,主體部分由矩形和半圓組成,設(shè)半圓為區(qū)域,四個(gè)全等的直角三角形為區(qū)域,矩形內(nèi)的陰影部分為區(qū)域,其中,設(shè)
當(dāng),求區(qū)域的面積.
請(qǐng)用的代數(shù)式表示出區(qū)域的面積并求出其最大值.
為了美觀,設(shè)置區(qū)域與區(qū)域的面積之比為.區(qū)域、區(qū)域、區(qū)域分別鑲嵌紅、藍(lán)、黃色三種玻璃,已知這三種玻璃的單價(jià)之和為元(三種玻璃的單價(jià)均為整數(shù)),整個(gè)花窗鑲嵌玻璃共花費(fèi)了元,求這三種玻璃的單價(jià).(取)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】太陽能是來自太陽的輻射能量,對(duì)于地球上的人類來說,太陽能是對(duì)環(huán)境無任何污染的可再生能源,因此許多國家都在大力發(fā)展太陽能.如圖是2013﹣2017年我國光伏發(fā)電裝機(jī)容量統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖提供的信息,判斷下列說法不合理的是( 。
A.截至2017年底,我國光伏發(fā)電累計(jì)裝機(jī)容量為13078萬千瓦
B.2017年我國光伏發(fā)電新裝機(jī)容量占當(dāng)年累計(jì)裝機(jī)容量的50%
C.2013﹣2017年,我國光伏發(fā)電新增裝機(jī)容量的平均值約為2500萬千瓦
D.2013﹣2017年,我國光伏發(fā)電新增裝機(jī)容量先減少后增加
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象交于A(m,6),B(3,n)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出的x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com