【題目】如圖所示,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點(diǎn)D.
(1)若BC=10,BD=6,則點(diǎn)D到AB的距離是多少?
(2)若∠BAD=30°,求∠B的度數(shù).
【答案】(1)4.(2)30°.
【解析】
過點(diǎn)D作DE⊥AB于E,先求出CD,再根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得DE=CD,從而得解;
根據(jù)角平分線的定義可求出∠CAB的度數(shù),再根據(jù)三角形內(nèi)角和定理即可解答.
解: 1)過點(diǎn)D作DE⊥AB于E,
∵BC=8,BD=5,
∴CD=BC-BD=10-6=4,
∵∠C=90°,AD平分∠BAC,
∴DE=CD=4,
即點(diǎn)D到AB的距離是4;
(2) 因?yàn)?/span>AD平分∠BAC,
所以∠BAC=2∠BAD=60°.
又因?yàn)椤?/span>C=90°,
所以∠B=90°-60°=30°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一只螞蟻從點(diǎn)A沿?cái)?shù)軸向右直爬2個(gè)單位到達(dá)點(diǎn)B,點(diǎn)A表示﹣ ,設(shè)點(diǎn)B所表示的數(shù)為m.
(1)求m的值;
(2)求|m﹣1|+(m+6)0的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:如圖,在Rt△ABC中,∠ACB=90°∠BAC=30°.
動(dòng)手操作:(1)若以直角邊AC所在的直線為對(duì)稱軸.將Rt△ABC作軸對(duì)稱變換,請(qǐng)你在原圖上作出它的對(duì)稱圖形:
觀察發(fā)現(xiàn):(2)Rt△ABC和它的對(duì)稱圖形組成了什么圖形?你最準(zhǔn)確的判斷是 .
合作交流:(3)根據(jù)上面的圖形,請(qǐng)你猜想直角邊BC與斜邊AB的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量合浦文昌塔的高度,某校興趣小組在塔前的平地A處安裝了測角儀,測得塔頂?shù)难鼋恰夕?30°,又沿著塔的方向前進(jìn)25米到達(dá)B處測量,測得塔頂?shù)难鼋恰夕?45°,已知測角儀的高AC=1.5米,請(qǐng)你根據(jù)上述數(shù)據(jù),計(jì)算塔FG的高度(結(jié)果精確到0.1米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將兩塊直角三角板的直角頂點(diǎn)C疊放在一起.
(1)若∠DCB=35°,求∠ACB的度數(shù);
(2)若∠ACB=140°,求∠DCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△ABC的頂點(diǎn)都在格點(diǎn)上,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,則頂點(diǎn)A所經(jīng)過的路徑長為( 。
A.10π
B.
C. π
D.π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1:分別與x軸、y軸交于點(diǎn)B、C,且與直線l2:交于點(diǎn)A.
(1)求出點(diǎn)A的坐標(biāo)
(2)若D是線段OA上的點(diǎn),且△COD的面積為12,求直線CD的解析式
(3)在(2)的條件下,設(shè)P是射線CD上的點(diǎn),在平面內(nèi)是否存在點(diǎn)Q,使以O(shè)、C、P、Q為頂點(diǎn)的四邊形是菱形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大潤發(fā)超市進(jìn)了一批成本為8元/個(gè)的文具盒.調(diào)查發(fā)現(xiàn):這種文具盒每個(gè)星期的銷售量y(個(gè))與它的定價(jià)x(元/個(gè))的關(guān)系如圖所示:
(1)求這種文具盒每個(gè)星期的銷售量y(個(gè))與它的定價(jià)x(元/個(gè))之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍);
(2)每個(gè)文具盒定價(jià)是多少元時(shí),超市每星期銷售這種文具盒(不考慮其他因素)可獲得的利潤最高?最高利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】常數(shù)a,b,c在數(shù)軸上的位置如圖所示,則關(guān)于x的一元二次方程ax2+bx+c=0根的情況是( )
A.有兩個(gè)相等的實(shí)數(shù)根
B.有兩個(gè)不相等的實(shí)數(shù)根
C.無實(shí)數(shù)根
D.無法確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com