如圖,四邊形ABCD中,AB∥CD,∠B=∠D,,求四邊形ABCD的周長.
18
(1)解:∵

又∵
 
即得是平行四邊形
 
∴四邊形的周長
注:用全等方法證明的,證明全等1分,證明平行四邊形1分,計算周長1分.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,正方形ABCD的邊AD與矩形EFGH的邊FG重合,將正方形ABCD以1cm/s的速度沿FG方向移動,移動開始前點A與點F重合.在移動過程中,邊AD始終與邊FG重合,連接CG,過點A作CG的平行線交線段GH于點P,連接PD.已知正方形ABCD的邊長為1cm,矩形EFGH的邊FG、GH的長分別為4cm、3cm.設正方形移動時間為x(s),線段GP的長為y(cm),其中0≤X≤2.5
小題1:試求出y關(guān)于x的函數(shù)關(guān)系式,并求出y =3時相應x的值;
小題2:記△DGP的面積為,△CDG的面積為,試說明是常數(shù);
小題3:當線段PD所在直線與正方形ABCD的對角線AC垂直時,求線段PD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

請寫出命題“矩形的對角線相等”的逆命題:                                 并判斷你所寫出的命題是否成立      (填“是”或“否”).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

我們把依次連接任意一個四邊形各邊中點所得的四邊形叫做中點四邊形. 如圖,
E、F、G、H分別是四邊形ABCD各邊的中點.

(1) 求證:四邊形EFGH是平行四邊形;
(2) 如果我們對四邊形ABCD的對角線AC與BD添加一定的條件, 則可使四邊形EFGH成為特殊的平行四邊形, 請你經(jīng)過探究后直接填寫答案:
① 當AC=BD時, 四邊形EFGH為__________;
② 當AC____BD時, 四邊形EFGH為矩形;
③ 當AC=BD且AC⊥BD時, 四邊形EFGH為__________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,將邊長為12cm的正方形紙片ABCD折疊,使得點A落在邊CD上的E點,折痕為MN.若CE的長為8cm,則MN的長為 (   )
A.12cmB.12.5cmC.cm D.13.5cm[

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,CD是AB的垂直平分線,若AC=10cm,BD=20cm,則四邊形ACBD的周長為             。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,現(xiàn)有兩個動點P、Q分別從B、D兩點同時出發(fā),點P以每秒2cm的速度沿BC向終點C移動,點Q以每秒1cm的速度沿DA向終點A移動,線段PQ與BD相交于點E,過E作EF∥BC交CD于點F,射線QF交BC的延長線于點H,設動點P、Q移動的時間為t(單位:秒,0<t<10)。
小題1:當t為何值時,四邊形PCDQ為平行四邊形?
小題2:在P、Q移動的過程中,線段PH的長是否發(fā)生改變?如果不變,求出線段PH的長;如果改變,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知四邊形ABCD,對角線AC、BD交于點O.現(xiàn)給出四個條件:①AC⊥BD;②AC平分對角線BD;③AD∥BC;④∠OAD=∠ODA,請你以其中的三個條件作為命題的題設,以“四邊形ABCD為菱形”作為命題的結(jié)論.
小題1:寫出一個真命題,并證明
小題2:寫出一個假命題,并舉出一個反例說明

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△ABC是邊長為2的等邊三角形,將△ABC沿射線BC向右平移得到△DCE,連接AD、BD,下列結(jié)論錯誤的是( ▲ )
A.AD∥BC                       B.AC⊥BD
C.四邊形ABCD面積為        D.四邊形ABED是等腰梯形

查看答案和解析>>

同步練習冊答案