為鼓勵(lì)居民節(jié)約用水,某市決定對(duì)居民用水收費(fèi)實(shí)行“階梯價(jià)”,即當(dāng)每月用水量不超過15噸時(shí)(包括15噸),采用基本價(jià)收費(fèi);當(dāng)每月用水量超過15噸時(shí),超過部分每噸采用市場(chǎng)價(jià)收費(fèi),小蘭家4、5月份的用水量及收費(fèi)情況如下表:

月份
用水量(噸)
水費(fèi)(元)
4
22
51
5
20
45
(1)分別求基本價(jià)和市場(chǎng)價(jià).
(2)設(shè)每月用水量為n噸,應(yīng)繳水費(fèi)為m元,請(qǐng)寫出m與n之間的函數(shù)關(guān)系式.
(3)小蘭家6月份的用水量為26噸,則她家要繳水費(fèi)多少元?

(1)基本價(jià)為2元/噸,市場(chǎng)價(jià)為3元/噸 (2)m= (3)63元

解析解:(1)設(shè)居民用水基本價(jià)為x元/噸,市場(chǎng)價(jià)為y元/噸.
由題意,得
解得
∴居民用水基本價(jià)為2元/噸,市場(chǎng)價(jià)為3元/噸.
(2)當(dāng)n≤15時(shí),m=2n,
當(dāng)n>15時(shí),m=15×2+(n-15)×3=3n-15,
∴m與n的關(guān)系式為m=
(3)∵小蘭家6月份的用水量為26噸,
∴她家要繳水費(fèi)15×2+(26-15)×3=63元.
答:小蘭家需繳水費(fèi)63元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,在平面直角坐標(biāo)系中,等腰Rt△AOB的斜邊OB在x軸上,直線經(jīng)過等腰Rt△AOB的直角頂點(diǎn)A,交y軸于C點(diǎn).
(1) 求點(diǎn)A坐標(biāo); 
(2)若點(diǎn)P為x軸上一動(dòng)點(diǎn).點(diǎn)Q的坐標(biāo)是(,),△PAQ是以點(diǎn)A為直角頂點(diǎn)的等腰三角形.求出的值并寫出點(diǎn)Q的坐標(biāo).
(3)在(2)的條件下,若D是坐標(biāo)平面內(nèi)任意一點(diǎn),使點(diǎn)A、P、Q、D剛好能構(gòu)成平行四邊形,請(qǐng)直接寫出符合條件的點(diǎn)D的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線與坐標(biāo)軸相交于A、B兩點(diǎn),與雙曲線交于點(diǎn)C.A、D兩點(diǎn)關(guān)于y軸對(duì)稱若四邊形OBCD的面積為6,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,二次函數(shù)y=(x-2)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B是點(diǎn)C關(guān)于該二次函數(shù)圖象的對(duì)稱軸對(duì)稱的點(diǎn).已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上點(diǎn)A(1,0)及點(diǎn)B.

(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足kx+b≥(x-2)2+m的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

爾凡駕車從甲地到乙地,設(shè)他出發(fā)第xmin時(shí)的速度為ykm/h,圖中的折線表示他在整個(gè)駕車過程中y與x之間的函數(shù)關(guān)系.
(1)當(dāng)20≤x≤30時(shí),汽車的平均速度為   km/h,該段時(shí)間行駛的路程為      km;
(2)當(dāng)30≤x≤35時(shí),求y與x之間的函數(shù)關(guān)系式,并求出爾凡出發(fā)第32min時(shí)的速度;
(3)如果汽車每行駛100km耗油8L,那么爾凡駕車從甲地到乙地共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線y=-x+6分別與x軸、y軸交于A、B兩點(diǎn);直線y=x與AB交于點(diǎn)C,與過點(diǎn)A且平行于y軸的直線交于點(diǎn)D.點(diǎn)E從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度沿軸向左運(yùn)動(dòng).過點(diǎn)E作x軸的垂線,分別交直線AB、OD于P、Q兩點(diǎn),以PQ為邊向右作正方形PQMN,設(shè)正方形PQMN與△ACD重疊部分(陰影部分)的面積為S(平方單位),點(diǎn)E的運(yùn)動(dòng)時(shí)間為t(秒).

(1)求點(diǎn)C的坐標(biāo);
(2)當(dāng)0<t<5時(shí),求S與t之間的函數(shù)關(guān)系式,并求S的最大值;
(3)當(dāng)t>0時(shí),直接寫出點(diǎn)(4,)在正方形PQMN內(nèi)部時(shí)t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,直線與x軸相交于點(diǎn)A,與直線相交于點(diǎn)P(2,).

(1)請(qǐng)判斷的形狀并說明理由.
(2)動(dòng)點(diǎn)E從原點(diǎn)O出發(fā),以每秒1個(gè)單位的速度沿著O→P→A的路線向點(diǎn)A勻速運(yùn)動(dòng)(E不與點(diǎn)O、A重合),過點(diǎn)E分別作EF⊥軸于F,EB⊥軸于B.設(shè)運(yùn)動(dòng)t秒時(shí),矩形EBOF與△OPA重疊部分的面積為S.
求:① S與t之間的函數(shù)關(guān)系式.
② 當(dāng)t為何值時(shí),S最大,并求S的最大值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知二次函數(shù)y=x-4x+3的圖象交x軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),              交y軸于點(diǎn)C.

(1)求直線BC的解析式;
(2)點(diǎn)D是在直線BC下方的拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)△BCD的面積最大時(shí),求D點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

小文家與學(xué)校相距1000米,某天小文上學(xué)時(shí)忘了帶一本書,走了一段時(shí)間才想起,于是返回家拿書,然后加快速度趕到學(xué)校,下圖是小文與家的距離y(米)關(guān)于時(shí)間x(分鐘)的函數(shù)圖象。請(qǐng)你根據(jù)圖象中給出的信息,解答下列問題:

(1)小文走了多遠(yuǎn)才返回家拿書?
(2)求線段AB所在直線的函數(shù)解析式;
(3)當(dāng)x=8分鐘時(shí),求小文與家的距離。

查看答案和解析>>

同步練習(xí)冊(cè)答案