【題目】榮昌公司要將本公司100噸貨物運往某地銷售,經(jīng)與春晨運輸公司協(xié)商,計劃租用甲、乙兩種型號的汽車共6輛,用這6輛汽車一次將貨物全部運走,其中每輛甲型汽車最多能裝該種貨物16噸,每輛乙型汽車最多能裝該種貨物18噸.已知租用1輛甲型汽車和2輛乙型汽車共需費用2500元;租用2輛甲型汽車和1輛乙型汽車共需費用2450元,且同一種型號汽車每輛租車費用相同.

(1)求租用一輛甲型汽車、一輛乙型汽車的費用分別是多少元?

(2)若榮昌公司計劃此次租車費用不超過5000元.通過計算求出該公司有幾種租車方案?請你設計出來,并求出最低的租車費用.

【答案】(1)設租用一輛甲型汽車的費用是元,租用一輛乙型汽車的費用是元.

根據(jù)題意得:

解得:

答:租用一輛甲型汽車的費用是800元,租用一輛乙型汽車的費用是850元.

(2)設租用甲型汽車輛,則租用乙型汽車(6-)輛.

根據(jù)題意得:

解得:24 為整數(shù) =2 或 =3 或 =4

共有三種方案 即 方案一:租用甲型汽車2輛,則租用乙型汽車4輛;方案二:租用甲型汽車3輛,則租用乙型汽車3輛;方案三:租用甲型汽車4輛,則租用乙型汽車2輛;

方案一的費用是800×2+850×4=5000元,方案二的費用是800×3+850×3=4950元,方案三的費用是800×4+850×2=4900元.

5000>4950>4900 最低的租車費用是 4900元.

答:共有三種方案 即 方案一:租用甲型汽車2輛,則租用乙型汽車4輛;方案二:租用甲型汽車3輛,則租用乙型汽車3輛;方案三:租用甲型汽車4輛,則租用乙型汽車2輛;最低的租車費用是 4900元.

【解析】1)找出等量關系列出方程組再求解即可.本題的等量關系為1輛甲型汽車和2輛乙型汽車共需費用2500租用2輛甲型汽車和1輛乙型汽車共需費用2450

得等量關系是將本公司100噸貨物運往某地銷售,經(jīng)與春晨運輸公司協(xié)商,計劃租用甲、乙兩種型號的汽車共6輛,用這6輛汽車一次將貨物全部運走,其中每輛甲型汽車最多能裝該種貨物16噸同一種型號汽車每輛且同一種型號汽車每輛租車費用相同

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如果a3b2,那么2a6b的值是( 。

A.4B.4C.1D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用配方法解下列方程:

14x2 -4x -1 = 0; (27x2 -28x +7= 0.

(3) x2-x-4=0 (4) 3x2-45=30x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用加減法解下列方程組:

(1) (2) (3)

(4) (5) (6)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,四邊形ABCD中,ADDC,BCAB,AE平分BAD,CF平分DCB,AECDE,CFABF,問AECF是否平行?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的邊BC在x軸上,點A在第二象限點D在第一象限,AB=2,OD=4,將矩形ABCD繞點O旋轉使點D落在x軸上,則點C對應點的坐標是

A. (–,1) B. (–1,) C. (–1,)或(1,–) D. (–,1)或(1,–)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知(m+n2=9, m-n2=4.求

1m2n2的值

2m2+n2的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部寫出來,于是小明用來表示的小數(shù)部分,你同意小明的表示方法嗎?事實上,小明的表示方法是有道理的,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.又例如:2273,即23,的整數(shù)部分為2,小數(shù)部分為2

請解答:

1 的整數(shù)部分是   ,小數(shù)部分是   

2)如果的小數(shù)部分為a, 的整數(shù)部分為b,求a+b-的值;

3)已知:x3+的整數(shù)部分,y是其小數(shù)部分,請直接寫出xy的值的相反數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】6x3ya1和﹣3xb+1y2是同類項,則ab_____

查看答案和解析>>

同步練習冊答案