【題目】如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點(diǎn)落在對角線D處.若AB=3,AD=4,則ED的長為(  )

A. B. 3 C. 1 D.

【答案】A

【解析】首先利用勾股定理計(jì)算出AC的長,再根據(jù)折疊可得△DEC≌△D′EC,設(shè)ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根據(jù)勾股定理可得方程22+x2=(4﹣x)2,再解方程即可.

解:∵AB=3,AD=4,

∴DC=3,

∴AC==5,

根據(jù)折疊可得:△DEC≌△D′EC,

∴D′C=DC=3,DE=D′E,

設(shè)ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,

在Rt△AED′中:(AD′)2+(ED′)2=AE2,

22+x2=(4﹣x)2,

解得:x=

故選:A.

“點(diǎn)睛”此題主要考查了圖形的翻著變換,以及勾股定理的應(yīng)用,關(guān)鍵是掌握折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MON=30°,點(diǎn)A1、A2、A3…在射線ON上,點(diǎn)B1、B2、B3…在射線OM上,A1B1A2、A2B2A3A3B3A4…均為等邊三角形,從左起第1個(gè)等邊三角形的邊長記為a1,第2個(gè)等邊三角形的邊長記為a2,以此類推.若OA1=1,則a2017= ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)如圖,在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-2,-1)、B(-1,1)、C(0,-2).

(1)點(diǎn)B關(guān)于坐標(biāo)原點(diǎn)O對稱的點(diǎn)的坐標(biāo)為 ( );

(2)將ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的A1B1C

(3)求過點(diǎn)B、B1的一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將等腰△ABC繞頂點(diǎn)B逆時(shí)針方向旋轉(zhuǎn)α度到△A1B1C1的位置,ABA1C1相交于點(diǎn)D,ACA1C1、BC1分別交于點(diǎn)E. F.

(1)求證:△BCF≌△BA1D.

(2)當(dāng)∠C=α度時(shí),判定四邊形A1BCE的形狀并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王剪了兩張直角三角形紙片,進(jìn)行了如下的操作:

(1)如圖1,將RtABC沿某條直線折疊,使斜邊的兩個(gè)端點(diǎn)AB重合,折痕為DE,若AC=6cm,BC=8cm,求CD的長.

(2)如圖2,小王拿出另一張RtABC紙片,將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,若AC=6cm,BC=8cm,求CD的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是 ( )

A. (2a2)3=6a6 B. a3.a2=a5 C. 2a2+4a2=6a4 D. (a+2b)2=a2+4b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果向北走5米記為是+5米,那么向南走10米記為_______________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,已知點(diǎn)A (1,2),B (-2, 2), C (-2, -2), D (1 ,-2), 把一根長為2017個(gè)單位長度且沒有彈性的細(xì)線(線的粗細(xì)忽略不計(jì))的一端固定在點(diǎn)A處,并按A→D→C→B→A……的順序緊繞在四邊形ABCD的邊上,則細(xì)線的另一端所在位置的點(diǎn)的坐標(biāo)是 ( )

A. (1, 2 ) B. ( 0, 2 ) C. (1,1) D. (1 ,-2 )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列條件中,不能判定四邊形是平行四邊形的是(

A. 對角線互相平分B. 兩組對邊分別相等

C. 對角線互相垂直D. 一組對邊平行,一組對角相等

查看答案和解析>>

同步練習(xí)冊答案