已知二次函數的圖象以A(-1,4)為頂點,且過點B(2,-5)
①求該函數的關系式;
②求該函數圖象與坐標軸的交點坐標;
③將該函數圖象向右平移,當圖象經過原點時,A、B兩點隨圖象移至A′、B′,求△O A′B′的面積.
【答案】
分析:(1)已知了拋物線的頂點坐標,可用頂點式設該二次函數的解析式,然后將B點坐標代入,即可求出二次函數的解析式.
(2)根據的函數解析式,令x=0,可求得拋物線與y軸的交點坐標;令y=0,可求得拋物線與x軸交點坐標.
(3)由(2)可知:拋物線與x軸的交點分別在原點兩側,由此可求出當拋物線與x軸負半軸的交點平移到原點時,拋物線平移的單位,由此可求出A′、B′的坐標.由于△OA′B′不規(guī)則,可用面積割補法求出△OA′B′的面積.
解答:解:(1)設拋物線頂點式y(tǒng)=a(x+1)
2+4
將B(2,-5)代入得:a=-1
∴該函數的解析式為:y=-(x+1)
2+4=-x
2-2x+3
(2)令x=0,得y=3,因此拋物線與y軸的交點為:(0,3)
令y=0,-x
2-2x+3=0,解得:x
1=-3,x
2=1,即拋物線與x軸的交點為:(-3,0),(1,0)
(3)設拋物線與x軸的交點為M、N(M在N的左側),由(2)知:M(-3,0),N(1,0)
當函數圖象向右平移經過原點時,M與O重合,因此拋物線向右平移了3個單位
故A'(2,4),B'(5,-5)
∴S
△OA′B′=
×(2+5)×9-
×2×4-
×5×5=15.
點評:本題考查了用待定系數法求拋物線解析式、函數圖象交點、圖形面積的求法等知識.不規(guī)則圖形的面積通常轉化為規(guī)則圖形的面積的和差.