精英家教網 > 初中數學 > 題目詳情
如圖,在Rt△ABC中,∠ABC=90°,斜邊AC的垂直平分線交BC于點D,交AC于點E,連接BE.
(1)若BE是△DEC的外接圓的切線,求∠C的大;
(2)當AB=1,AC=2時,求△DEC的外接圓的半徑.

【答案】分析:(1)求出O在DC上,連接OE,得出∠EBO+∠BOE=90°,求出BE=EC=AC,推出∠C=∠EBC,得出∠BOE=2∠C,即可求出∠C;
(2)求出EC,證△DEC∽△ABC,推出=,代入求出DC即可.
解答:解:(1)∵DE垂直平分AC,
∴∠DEC=90°,
∴DC是⊙O的直徑,
∴O在DC上,
連接OE,
∵BE是⊙O的切線,
∴∠OEB=90°,
∴∠EBO+∠BOE=90°,
在Rt△ABC中,E為斜邊AC的中點,
∴BE=EC=AE=AC(直角三角形斜邊上中線等于斜邊的一半),
∴∠EBO=∠C,
∵OC=OE,
∴∠C=∠CEO,
∵∠BOE=∠C+∠CEO,
∴∠BOE=2∠C,
∵∠EBO+∠BOE=90°,∠EBO=∠C
∴∠C+2∠C=90°,
∴∠C=30°;

(2)在Rt△ABC中,BC==,
EC=AC=1,
∵∠ABC=∠DEC=90°,∠C=∠C,
∴△DEC∽△ABC,
=,
=,
∴DC=
∴△DEC的外接圓的半徑是
點評:本題考查的知識點是切線的性質、相似三角形的性質和判定、勾股定理、線段垂直平分線的性質,主要考查學生運用性質進行推理和計算的能力.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•莆田質檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設AD=x,CF=y.求y與x之間函數解析式,并寫出函數的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設點P的運動時間為t(s).
(1)當點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數式表示).
(2)當點N落在AB邊上時,求t的值.
(3)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設五邊形的面積為S(cm2),求S與t的函數關系式.

查看答案和解析>>

同步練習冊答案