【題目】如圖,拋物線軸交于,兩點(diǎn),與軸交于點(diǎn),頂點(diǎn)為,以為直徑作D.下列結(jié)論:①拋物線的對(duì)稱軸是直線x=3;②⊙D的面積為16π;③拋物線上存在點(diǎn)E,使四邊形ACED為平行四邊形;④直線CM與⊙D相切.其中正確結(jié)論的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】

①根據(jù)拋物線的解析式得出拋物線與x軸的交點(diǎn)A、B坐標(biāo),由拋物線的對(duì)稱性即可判定;②求得⊙D的直徑AB的長(zhǎng),得出其半徑,由圓的面積公式即可判定,③過(guò)點(diǎn)CCEAB,交拋物線于E,如果CE=AD,則根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形即可判定;④求得直線CM、直線CD的解析式通過(guò)它們的斜率進(jìn)行判定.

∵在y=(x+2)(x-8)中,當(dāng)y=0時(shí),x=-2x=8,

∴點(diǎn)A(-2,0)、B(8,0),

∴拋物線的對(duì)稱軸為x==3,故①正確;

∵⊙D的直徑為8-(-2)=10,即半徑為5,

∴⊙D的面積為25π,故②錯(cuò)誤;

y=(x+2)(x-8)=x2-x-4中,當(dāng)x=0時(shí)y=-4,

∴點(diǎn)C(0,-4),

當(dāng)y=-4時(shí),x2-x-4=-4,

解得:x1=0、x2=6,

所以點(diǎn)E(6,-4),

CE=6,

AD=3-(-2)=5,

AD≠CE,

∴四邊形ACED不是平行四邊形,故③錯(cuò)誤;

y=x2-x-4=(x-3)2-,

∴點(diǎn)M(3,-),

設(shè)直線CM解析式為y=kx+b,

將點(diǎn)C(0,-4)、M(3,-)代入,

得:,

解得:,

所以直線CM解析式為y=-x-4;

設(shè)直線CD解析式為y=mx+n,

將點(diǎn)C(0,-4)、D(3,0)代入,得:

解得:,

所以直線CD解析式為y=x-4,

-×=-1CMCD于點(diǎn)C,

∴直線CM與⊙D相切,故④正確;

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PB切⊙O于點(diǎn)B,PO交⊙O于點(diǎn)E,延長(zhǎng)PO交⊙O于點(diǎn)A,連結(jié)AB,O的半徑ODAB于點(diǎn)C,BP=6,P=30°,則CD的長(zhǎng)度是( 。

A. B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了還城市一片藍(lán)天,市政府決定大力發(fā)展公共交通,鼓勵(lì)市民乘公交車(chē)或地鐵出行.設(shè)每天公交車(chē)和地鐵的運(yùn)營(yíng)收入為y百萬(wàn)元,客流量為x百萬(wàn)人,以(xy)為坐標(biāo)的點(diǎn)都在左圖中對(duì)應(yīng)的射線上.其中,運(yùn)營(yíng)收入=票價(jià)收入﹣運(yùn)營(yíng)成本.交通部門(mén)經(jīng)過(guò)調(diào)研,采取了如圖所示的調(diào)整方案.

1)在左圖中,代表公交車(chē)運(yùn)營(yíng)情況的(x,y)對(duì)應(yīng)的點(diǎn)在射線  上,公交車(chē)的日運(yùn)營(yíng)成本是  百萬(wàn)元,當(dāng)客流量x滿足  時(shí),公交車(chē)的運(yùn)營(yíng)收入超過(guò)4百萬(wàn)元;

2)求調(diào)整后地鐵每天的運(yùn)營(yíng)收入和客流量之間的函數(shù)關(guān)系,不要求寫(xiě)自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)的圖象與一次函數(shù)的圖象交于點(diǎn)A(1,4)和點(diǎn)B(m,﹣2).

(1)求一次函數(shù)的關(guān)系式;

(2)求△AOB的面積;

(3)觀察圖象,寫(xiě)出使得y1y2成立的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,ABAC,AB的垂直平分線與直線AC相交所成銳角為40°,則此等腰三角形的頂角為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線相交于點(diǎn),軸交于點(diǎn),軸交于點(diǎn),與軸交于點(diǎn).下列說(shuō)法錯(cuò)誤的是( .

A.B.

C.D.直線的函數(shù)表達(dá)式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(多選)在同一條道路上,甲車(chē)從地到地,乙車(chē)從地到地,兩車(chē)同時(shí)出發(fā),乙車(chē)先到達(dá)目的地,圖中的折線段表示甲,乙兩車(chē)之間的距離(千米)與行駛時(shí)間(小時(shí))的函數(shù)關(guān)系,下列說(shuō)法正確的是(

A.甲乙兩車(chē)出發(fā)2小時(shí)后相遇

B.甲車(chē)速度是40千米/小時(shí)

C.相遇時(shí)乙車(chē)距離100千米

D.乙車(chē)到地比甲車(chē)到地早小時(shí)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊△中,,,點(diǎn)、分別為、上的兩個(gè)定點(diǎn)且,在上有一動(dòng)點(diǎn)使最短,則的最小值為_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案