探索與研究:
中國古代的數(shù)學家們不僅很早就發(fā)現(xiàn)并應用勾股定理,而且很早就嘗試對勾股定理作理論的證明.最早對勾股定理進行證明的,是三國時期吳國的數(shù)學家趙爽.趙爽創(chuàng)制了一幅“勾股圓方圖”,用形數(shù)結合的方法,給出了勾股定理的詳細證明.在這幅“勾股圓方圖”中,以弦為邊長得到正方形ABDE是由4個全等的直角三角形再加上中間的那個小正方形組成的.每個直角三角形的面積為ab/2;中間的小正方形邊長為b-a,則面積為(b-a)2.于是便可得如下的式子:
S正方形EFGH=c2=(a-b)2+4×數(shù)學公式ab
所以a2+b2=c2
(1)你能用下面的圖形也來驗證一下勾股定理嗎?試一試!
(2)你自己還能設計一種方法來驗證勾股定理嗎?

解:(1)∵S梯形ABCD=(a+b)(a+b)=(a2+b2)+ab,S梯形ABCD=2×ab+c2
(a2+b2)+ab=2×ab+c2∴a2+b2=c2

(2)在Rt△ABC中,設直角邊AC、BC的長度分別為a、b,斜邊AB的長為c,過點C作CD⊥AB,垂足是D.

在△ADC和△ACB中,
∵∠ADC=∠ACB=90°,
∠CAD=∠BAC,
∴△ADC∽△ACB,
AD:AC=AC:AB,
即AC2=AD•AB
同理可證,△CDB∽△ACB,從而有BC2=BD•AB.
∴AC2+BC2=(AD+DB)•AB=AB2,即a2+b2=c2
分析:(1)由梯形的面積公式可得S梯形ABCD=(a2+b2)+ab,由拼圖可得S梯形ABCD=2×ab+c2,所以(a2+b2)+ab=2×ab+c2∴a2+b2=c2;
(2)可利用相似三角形證明.
點評:此題考查的是勾股定理的證明,盡量掌握多種證法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

探索與研究:
中國古代的數(shù)學家們不僅很早就發(fā)現(xiàn)并應用勾股定理,而且很早就嘗試對勾股定理作理論的證明.最早對勾股定理進行證明的,是三國時期吳國的數(shù)學家趙爽.趙爽創(chuàng)制了一幅“勾股圓方圖”,用形數(shù)結合的方法,給出了勾股定理的詳細證明.在這幅“勾股圓方圖”中,以弦為邊長得到正方形ABDE是由4個全等的直角三角形再加上中間的那個小正方形組成的.每個直角三角形的面積為ab/2;中間的小正方形邊長為b-a,則面積為(b-a)2.于是便可得如下的式子:
S正方形EFGH=c2=(a-b)2+4×
12
ab
所以a2+b2=c2
(1)你能用下面的圖形也來驗證一下勾股定理嗎?試一試!
(2)你自己還能設計一種方法來驗證勾股定理嗎?
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案