【題目】如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點,且∠DAE=45°,將△ADC繞點A順時針旋轉(zhuǎn)90°后,得到△AFB,連接EF,下列結(jié)論:①∠EAF=45°;②△AED≌△AEF;③△ABE∽△ACD;④BE2+DC2=DE2.
其中正確的是______.(填序號)
【答案】①②④
【解析】
①根據(jù)旋轉(zhuǎn)得到,對應(yīng)角∠CAD=∠BAF,由∠EAF=∠BAF+∠BAE=∠CAD+∠BAE即可判斷
②由旋轉(zhuǎn)得出AD=AF, ∠DAE=∠EAF,及公共邊即可證明
③在△ABE∽△ACD中,只有AB=AC、∠ABE=∠ACD=45°兩個條件,無法證明
④先由△ACD≌△ABF,得出∠ACD=∠ABF=45°,進而得出∠EBF=90°,然后在Rt△BEF中,運用勾股定理得出BE2+BF2=EF2,等量代換后判定④正確
由旋轉(zhuǎn),可知:∠CAD=∠BAF.
∵∠BAC=90°,∠DAE=45°,
∴∠CAD+∠BAE=45°,
∴∠BAF+∠BAE=∠EAF=45°,結(jié)論①正確;
②由旋轉(zhuǎn),可知:AD=AF
在△AED和△AEF中,
∴△AED≌△AEF(SAS),結(jié)論②正確;
③在△ABE∽△ACD中,只有AB=AC,、∠ABE=∠ACD=45°兩個條件,
無法證出△ABE∽△ACD,結(jié)論③錯誤;
④由旋轉(zhuǎn),可知:CD=BF,∠ACD=∠ABF=45°,
∴∠EBF=∠ABE+∠ABF=90°,
∴BF2+BE2=EF2.
∵△AED≌△AEF,
EF=DE,
又∵CD=BF,
∴BE2+DC2=DE2,結(jié)論④正確.
故答案為:①②④
科目:初中數(shù)學 來源: 題型:
【題目】躍壯五金商店準備從寧云機械廠購進甲、乙兩種零件進行銷售.若每個甲種零件的進價比每個乙種零件的進價少2元,且用80元購進甲種零件的數(shù)量與用100元購進乙種零件的數(shù)量相同.
(1)求每個甲種零件、每個乙種零件的進價分別為多少元?
(2)若該五金商店本次購進甲種零件的數(shù)量比購進乙種零件的數(shù)量的3倍還少5個,購進兩種零件的總數(shù)量不超過95個,該五金商店每個甲種零件的銷售價格為12元,每個乙種零件的銷售價格為15元,則將本次購進的甲、乙兩種零件全部售出后,可使銷售兩種零件的總利潤(利潤=售價-進價)超過371元,通過計算求出躍壯五金商店本次從寧云機械廠購進甲、乙兩種零件有幾種方案?請你設(shè)計出來.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某一項工程,在工程招標時,接到甲、乙兩個工程隊的投標書,施工一天,需付甲工程隊工程款1.5萬元,乙工程隊工程款1.1萬元,工程領(lǐng)導小組根據(jù)甲乙兩隊的投標書測算,可有三種施工方案:
(1)甲隊單獨完成這項工程剛好如期完成;
(2)乙隊單獨完成這項工程要比規(guī)定日期多用5天;
(3)若甲、乙兩隊合作4天,余下的工程由乙隊單獨也正好如期完成.
據(jù)上述條件解決下列問題:
①規(guī)定期限是多少天?寫出解答過程;
②在不耽誤工期的情況下,你覺得那一種施工方案最節(jié)省工程款?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC,BD相交于O點,點P是線段AD上一動點(不與點D重合),PO的延長線交BC于Q點.
(1)求證:四邊形PBQD為平行四邊形.
(2)若AB=3cm,AD=4cm,P從點A出發(fā).以1cm/s的速度向點D勻速運動.設(shè)點P的運動時間為ts,問:四邊形PBQD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,.點O是的中點,過點O的直線與從重合的位置開始,繞點O作逆時針旋轉(zhuǎn),交于點D,過點C作交直線于點E,設(shè)直線的旋轉(zhuǎn)角為.
(1)當四邊形是等腰梯形時,則=_______,此時________;
(2)當四邊形是直角梯形時,則=_________,此時_________;
(3)當為幾度時,判斷四邊形是否為菱形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市在端午節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉(zhuǎn)動轉(zhuǎn)盤的方式享受折扣優(yōu)惠,本次活動共有兩種方式,方式一:轉(zhuǎn)動轉(zhuǎn)盤甲,指針指向A區(qū)域時,所購買物品享受9折優(yōu)惠、指針指向其它區(qū)域無優(yōu)惠;方式二:同時轉(zhuǎn)動轉(zhuǎn)盤甲和轉(zhuǎn)盤乙,若兩個轉(zhuǎn)盤的指針指向每個區(qū)域的字母相同,所購買物品享受8折優(yōu)惠,其它情況無優(yōu)惠.在每個轉(zhuǎn)盤中,指針指向每個區(qū)城的可能性相同(若指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤)
(1)若顧客選擇方式一,則享受9折優(yōu)惠的概率為多少;
(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能,并求顧客享受8折優(yōu)惠的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD中,∠ABC=60°,E、F分別在CD和BC的延長線上,AE∥BD,EF⊥BC,EF=3,則AB的長是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩家體育用品商店出售同樣的乒乓球和乒乓拍,乒乓球拍每幅定價20元,乒乓球每盒定價5元,現(xiàn)兩家商店搞促銷活動.甲店:每買一副球拍送一盒乒乓球;乙店:按定價的8折優(yōu)惠.某班級需購球拍4副,乒乓球若干盒(不少于4盒).
(1)設(shè)購買乒乓球盒數(shù)為(盒),在甲店購買的付款數(shù)為(元);在乙店購買的付款數(shù)為(元),分別寫出和與的函數(shù)關(guān)系式,并寫出定義域.
(2)就乒乓球的盒數(shù)討論去哪家購買合算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】射線QN與等邊△ABC的兩邊AB,BC分別交于點M,N,且AC∥QN,AM=MB=2cm,QM=4cm.動點P從點Q出發(fā),沿射線QN以每秒1cm的速度向右移動,經(jīng)過t秒,以點P為圓心,cm為半徑的圓與△ABC的邊相切(切點在邊上),請寫出t可取的一切值 (單位:秒)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com