如圖,以邊長(zhǎng)為4的正△ABC的BC邊為直徑作⊙O與AB相交于點(diǎn)D,⊙O的切線DE交AC于E,EF⊥BC,點(diǎn)F是垂足,則EF=   
【答案】分析:連接OD,則根據(jù)DE是圓的切線,OD⊥DE,則△OBD是等邊三角形,因而B(niǎo)D=BC=2,因而AD=2;在直角△ADE中得到AE=AD=1,則EC=3,在直角△EFC中根據(jù)三角函數(shù)得到EF=EC•sin60°=
解答:解:連接OD,
∵OD⊥DE,
∴BD=BC=2,
∴AD=2;
在Rt△ADE中,
AE=AD=1,
∴EC=3,
在Rt△EFC中,
EF=EC•sin60°=
點(diǎn)評(píng):本題考查了圓的切線性質(zhì),及解直角三角形的知識(shí).運(yùn)用切線的性質(zhì)來(lái)進(jìn)行計(jì)算或論證,常通過(guò)作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,以邊長(zhǎng)為4的正△ABC的BC邊為直徑作⊙O與AB相交于點(diǎn)D,⊙O的切線DE交AC于E,EF⊥BC,點(diǎn)F是垂足,則EF=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,以邊長(zhǎng)為6的正△ABC的頂點(diǎn)A為圓心,作弧DE與BC相切,分別交AB,AC于點(diǎn)D,E,則弧DE的長(zhǎng)為:
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第24章《圓》中考題集(32):24.2 點(diǎn)、直線和圓的位置關(guān)系(解析版) 題型:填空題

如圖,以邊長(zhǎng)為4的正△ABC的BC邊為直徑作⊙O與AB相交于點(diǎn)D,⊙O的切線DE交AC于E,EF⊥BC,點(diǎn)F是垂足,則EF=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年云南省玉溪市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:填空題

(2006•玉溪)如圖,以邊長(zhǎng)為6的正△ABC的頂點(diǎn)A為圓心,作弧DE與BC相切,分別交AB,AC于點(diǎn)D,E,則弧DE的長(zhǎng)為:   

查看答案和解析>>

同步練習(xí)冊(cè)答案