如圖,將一副直角三角尺的直角頂點(diǎn)C疊放在一起.
(1)如圖1,若CE恰好是∠ACD的角平分線,請(qǐng)你猜想此時(shí)CD是不是∠ECB的角平分線?只回答出“是”或“不是”即可;
(2)如圖2,若∠ECD=α,CD在∠BCE的內(nèi)部,請(qǐng)你猜想∠ACE與∠DCB是否相等?并簡(jiǎn)述理由;
(3)在(2)的條件下,請(qǐng)問∠ECD與∠ACB的和是多少?并簡(jiǎn)述理由.
分析:(1)是,首先根據(jù)直角三角板的特點(diǎn)得到∠ACD=90°,∠ECB=90°,再根據(jù)角平分線的定義計(jì)算出∠ECD和∠DCB的度數(shù)即可;
(2)∠ACE與∠DCB相等;根據(jù)等角的余角相等即可得到答案;
(3)根據(jù)角的和差關(guān)系進(jìn)行等量代換即可.
解答:解:(1)是,
∵∠ACD=90°,CE恰好是∠ACD的角平分線,
∴∠ECD=45°,
∵∠ECB=90°,
∴∠DCB=90°-45°=45°,
∴∠ECD=∠DCB,
∴此時(shí)CD是∠ECB的角平分線;

(2)∠ACE與∠DCB相等;
∵∠ACD=∠ECB=90°,∠ECD=α,
∴∠ACE=90°-α,∠DCB=90°-α,
∴∠ACE=∠DCB;

(3)∠ECD+∠ACB=180°,
理由如下:
∠ECD+∠ACB,
=∠ECD+∠ACE+∠ECB,
=∠ACD+∠BCE,
=90°+90°,
=180°.
點(diǎn)評(píng):此題主要考查了角的計(jì)算,關(guān)鍵是根據(jù)圖形分清角之間的和差關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我們知道,“直角三角形斜邊上的高線將三角形分成兩個(gè)與原三角形相似的直角三角形”用這一方法,將矩形ABCD分割成大小不同的七個(gè)相似直角三角形.按從大到小的順序編號(hào)為①至⑦(如圖),從而割成一副“三角七巧板”.已精英家教網(wǎng)知線段AB=1,∠BAC=θ.
(1)請(qǐng)用θ的三角函數(shù)表示線段BE的長(zhǎng)
 
;
(2)圖中與線段BE相等的線段是
 

(3)仔細(xì)觀察圖形,求出⑦中最短的直角邊DH的長(zhǎng).(用θ的三角函數(shù)表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆浙江樂清鹽盤一中八年級(jí)上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,將一副直角三角扳疊在一起,使直角頂點(diǎn)重合于O點(diǎn),則∠AOB+∠DOC=_____

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:專項(xiàng)題 題型:解答題

我們知道“直角三角形斜邊上的高將三角形分成兩個(gè)與原三角形相似的直角三角形”,用這一方法,將矩形ABCD分割成大小不同的七個(gè)相似直角三角形,按從大到小的順序編號(hào)為①至⑦(如圖),從而制成一副“三角七巧板”,已知AB=1,∠BAC=。
(1)請(qǐng)用的三角函數(shù)表示線段BE的長(zhǎng):____;
(2)圖中與線段BE長(zhǎng)度相等的線段是_____;
(3)仔細(xì)觀察圖形,求出⑦中最短的直角邊DH的長(zhǎng)(用的三角函數(shù)表示)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第1章《直角三角形的邊角關(guān)系》中考題集(23):1.4 船有觸角的危險(xiǎn)嗎(解析版) 題型:解答題

我們知道,“直角三角形斜邊上的高線將三角形分成兩個(gè)與原三角形相似的直角三角形”用這一方法,將矩形ABCD分割成大小不同的七個(gè)相似直角三角形.按從大到小的順序編號(hào)為①至⑦(如圖),從而割成一副“三角七巧板”.已知線段AB=1,∠BAC=θ.
(1)請(qǐng)用θ的三角函數(shù)表示線段BE的長(zhǎng)______;
(2)圖中與線段BE相等的線段是______;
(3)仔細(xì)觀察圖形,求出⑦中最短的直角邊DH的長(zhǎng).(用θ的三角函數(shù)表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江樂清鹽盤一中八年級(jí)上學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:填空題

如圖,將一副直角三角扳疊在一起,使直角頂點(diǎn)重合于O點(diǎn),則∠AOB+∠DOC=_____

查看答案和解析>>

同步練習(xí)冊(cè)答案