【題目】如圖,⊙P內(nèi)含于⊙O,⊙O的弦AB切⊙P于點C,且AB∥OP.若陰影部分的面積為16π,則弦AB的長為 .
【答案】8
【解析】解:如圖,過O點作OD⊥AB,垂足為D,連接PC,AO, 設(shè)⊙O的半徑為R,⊙P的半徑為r,
∵AB與⊙P相切于C點,
∴PC⊥AB,PC=r,
又OP∥AB,
∴OD=PC=r,
由已知陰影部分面積為16π,得
π(R2﹣r2)=16π,即R2﹣r2=16,
∴AO2﹣OD2=R2﹣r2=16,
在Rt△AOD中,由勾股定理得AD2=AO2﹣OD2=16,
即AD=4,
由垂徑定理可知AB=2AD=8.
所以答案是:8.
【考點精析】認(rèn)真審題,首先需要了解勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2),還要掌握垂徑定理(垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在平面直角坐標(biāo)系內(nèi),頂點的坐標(biāo)分別為A(﹣1,5),B(﹣4,1),C(﹣1,1)將△ABC繞點A逆時針旋轉(zhuǎn)90°,得到△AB′C′,點B,C的對應(yīng)點分別為點B′,C′,
(1)畫出△AB′C′;
(2)寫出點B′,C′的坐標(biāo);
(3)求出在△ABC旋轉(zhuǎn)的過程中,點C經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系.若直線l的極坐標(biāo)方程為 ,曲線C的極坐標(biāo)方程為:ρsin2θ=cosθ,將曲線C上所有點的橫坐標(biāo)縮短為原來的一半,縱坐標(biāo)不變,然后再向右平移一個單位得到曲線C1 . (Ⅰ)求曲線C1的直角坐標(biāo)方程;
(Ⅱ)已知直線l與曲線C1交于A,B兩點,點P(2,0),求|PA|+|PB|的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=4x的焦點為F,準(zhǔn)線為l.⊙F與C交于A,B兩點,與x軸的負(fù)半軸交于點P. (Ⅰ)若⊙F被l所截得的弦長為 ,求|AB|;
(Ⅱ)判斷直線PA與C的交點個數(shù),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,O是AB邊上的一點,以O(shè)A為半徑的⊙O與邊BC相切于點E.
(1)若AC=6,BC=10,求⊙O的半徑.
(2)過點E作弦EF⊥AB于M,連接AF,若∠F=2∠B,求證:四邊形ACEF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,D是斜邊AB上的中點,E是邊BC上的點,AE與CD交于點F,且AC2=CECB.
(1)求證:AE⊥CD;
(2)連接BF,如果點E是BC中點,求證:∠EBF=∠EAB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一段斜坡路面的截面圖如圖所示,BC⊥AC,其中坡面AB的坡比i1=1:2,現(xiàn)計劃削坡放緩,新坡面的坡角為原坡面坡腳的一半,求新坡面AD的坡比i2(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校積極倡導(dǎo)學(xué)生展示自我,發(fā)展綜合素質(zhì),在新學(xué)期舉辦的校園文化藝術(shù)節(jié)中,學(xué)生可以在舞蹈、器樂、聲樂、小品、播音主持五個類別中挑選一項報名參加比賽,八年級學(xué)生小明從本年級學(xué)生各個類別的報名登記表中隨機(jī)抽取了一部分學(xué)生的報名情況進(jìn)行整理,并制作了如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請解答下列問題:
(1)小明隨機(jī)抽取了名學(xué)生的報名情況進(jìn)行整理,扇形統(tǒng)計圖中,表示E類別部分的扇形的圓心角度數(shù)為度;
(2)將條形統(tǒng)計圖補(bǔ)充完整;
(3)小華認(rèn)為如果知道八年級報名參加比賽的總?cè)藬?shù),則根據(jù)小明制作的統(tǒng)計圖就可以估算出八年級報名參加聲樂比賽的人數(shù).小明認(rèn)為如果知道初中三個年級報名參加比賽的總?cè)藬?shù),則根據(jù)自己制作的統(tǒng)計圖也可以估算出整個初中年級報名參見聲樂比賽的人數(shù).你認(rèn)為他倆的看法對嗎?并說明你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com