【題目】如圖,Rt△APE,∠AEP=90°,以AB為直徑的⊙,OPEC,且AC平分∠EAP.連接BC,PBPC=1:2.

(1)求證:PE是⊙O的切線;

(2)已知⊙O的半徑為,求AE的長(zhǎng).

【答案】(1)見(jiàn)解析;(2)4

【解析】

1)連接OC,由AC平分∠EAP,得到∠DAC=OAC,由等腰三角形的性質(zhì)得到∠CAO=ACO,等量代換得到∠DAC=ACO,根據(jù)平行線的性質(zhì)得到∠E=OCP=90°,于是得到結(jié)論;

2)設(shè)PB=xPC=2x,根據(jù)勾股定理得到PC=,求得AP=,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.

解:(1)連接OC,

AC平分∠EAP,

∴∠DAC=∠OAC,

OAOC

∴∠CAO=∠ACO,

∴∠DAC=∠ACO

AEOC,

∴∠E=∠OCP90°

PE是⊙O的切線;.

2)∵PBPC12,

∴設(shè)PBx,PC2x

OC2+PC2OP2,即(2+2x2=(+x2

x,.

PC,PB,

AP,.

OCAE,

∴△PCO∽△PEA

AE4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為1,正方形CEFG的面積為,點(diǎn)ECD邊上,點(diǎn)GBC的延長(zhǎng)線上,設(shè)以線段ADDE為鄰邊的矩形的面積為,且.

⑴求線段CE的長(zhǎng);

⑵若點(diǎn)HBC邊的中點(diǎn),連結(jié)HD,求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】音樂(lè)噴泉(圖1)可以使噴水造型隨音樂(lè)的節(jié)奏起伏變化而變化.某種音樂(lè)噴泉形狀如拋物線,設(shè)其出水口為原點(diǎn),出水口離岸邊18m,音樂(lè)變化時(shí),拋物線的頂點(diǎn)在直線y=kx上變動(dòng),從而產(chǎn)生一組不同的拋物線(圖2),這組拋物線的統(tǒng)一形式為y=ax2+bx.

(1)若已知k=1,且噴出的拋物線水線最大高度達(dá)3m,求此時(shí)a、b的值;

(2)若k=1,噴出的水恰好達(dá)到岸邊,則此時(shí)噴出的拋物線水線最大高度是多少米?

(3)若k=3,a=﹣,則噴出的拋物線水線能否達(dá)到岸邊?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)等腰三角形的三邊長(zhǎng)均滿(mǎn)足方程x2-6x+8=0,則此三角形的周長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】12分)如圖,矩形ABCD,AB6cm,AD2cm,點(diǎn)P2cm/s的速度從頂點(diǎn)A出發(fā)沿折線ABC向點(diǎn)C運(yùn)動(dòng),同時(shí)點(diǎn)Qlcm/s的速度從頂點(diǎn)C出發(fā)向點(diǎn)D運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)末端停止運(yùn)動(dòng)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).

(1)問(wèn)兩動(dòng)點(diǎn)運(yùn)動(dòng)幾秒,使四邊形PBCQ的面積是矩形ABCD面積的;

(2)問(wèn)兩動(dòng)點(diǎn)經(jīng)過(guò)多長(zhǎng)時(shí)間使得點(diǎn)P與點(diǎn)Q之間的距離為?若存在,

求出運(yùn)動(dòng)所需的時(shí)間;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,弦BC=6cm,AC=8cm.若動(dòng)點(diǎn)P2cm/s的速度從B點(diǎn)出發(fā)沿著B→A的方向運(yùn)動(dòng),點(diǎn)Q1cm/s的速度從A點(diǎn)出發(fā)沿著A→C的方向運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí),點(diǎn)Q也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s),當(dāng)APQ是直角三角形時(shí),t的值為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)高鐵迅猛發(fā)展,給我們的出行帶來(lái)極大的便捷,如圖1,是某種新設(shè)計(jì)動(dòng)車(chē)車(chē)頭的縱截面一部分,曲線OBA是一開(kāi)口向左,對(duì)稱(chēng)軸正好是水平線OC的拋物線的一部分,點(diǎn)AB是車(chē)頭玻璃罩的最高點(diǎn)和最低點(diǎn),AC、BD是兩點(diǎn)到車(chē)廂底部的距離,OD=1.5米,BD=1.5米,AC=3米,請(qǐng)你利用所學(xué)的函數(shù)知識(shí)解決以下問(wèn)題.

1)為了方便研究問(wèn)題,需要把曲線OBA繞點(diǎn)O旋轉(zhuǎn)轉(zhuǎn)化為我們熟悉的函數(shù),請(qǐng)你在所給的方框內(nèi),畫(huà)出你旋轉(zhuǎn)后函數(shù)圖象的草圖,在圖中標(biāo)出點(diǎn)OA、BC、D對(duì)應(yīng)的位置,并求你所畫(huà)的函數(shù)的解析式.

2)如圖2,駕駛員座椅安裝在水平線OC上一點(diǎn)P處,實(shí)驗(yàn)表明:當(dāng)PA+PB最小時(shí),駕駛員駕駛時(shí)視野最佳,為了達(dá)到最佳視野,求OP的長(zhǎng).

3)駕駛員頭頂?shù)讲Aд值母叨戎辽贋?/span>0.3米才感到壓抑,一個(gè)駕駛員坐下時(shí)頭頂?shù)揭蚊娴木嚯x為1米,在(2)的情況下,座椅最多條件到多少時(shí)他才感到舒適?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣4a經(jīng)過(guò)A(﹣1,0)、C(0,4)兩點(diǎn),與x軸交于另一點(diǎn)B.

(1)求拋物線的解析式;

(2)求拋物線的頂點(diǎn)坐標(biāo)

(3)已知點(diǎn)D(m,m+1)在第一象限的拋物線上,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若拋物線y=x2+bx(b>2)上存在關(guān)于直線y=x成軸對(duì)稱(chēng)的兩個(gè)點(diǎn),則b的取值范圍是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案