(2013•南寧)如圖,在菱形ABCD中,AC為對角線,點E、F分別是邊BC、AD的中點.
(1)求證:△ABE≌△CDF;
(2)若∠B=60°,AB=4,求線段AE的長.
分析:(1)首先根據(jù)菱形的性質(zhì),得到AB=BC=AD=CD,∠B=∠D,結(jié)合點E、F分別是邊BC、AD的中點,即可證明出△ABE≌△CDF;
(2)首先證明出△ABC是等邊三角形,結(jié)合題干條件在Rt△AEB中,∠B=60°,AB=4,即可求出AE的長.
解答:解:(1)∵四邊形ABCD是菱形,
∴AB=BC=AD=CD,∠B=∠D,
∵點E、F分別是邊BC、AD的中點,
∴BE=DF,
在△ABE和△CDF中,
AB=CD
∠B=∠D
BE=DF
,
∴△ABE≌△CDF(SAS);

(2)∵∠B=60°,
∴△ABC是等邊三角形,
∵點E是邊BC的中點,
∴AE⊥BC,
在Rt△AEB中,∠B=60°,AB=4,
sin60°=
AE
AB
=
AE
4

解得AE=2
3
點評:本題主要考查菱形的性質(zhì)等知識點,解答本題的關(guān)鍵是熟練掌握菱形的性質(zhì)、全等三角形的證明以及等邊三角形的性質(zhì),此題難度不大,是一道比較好的中考試題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南寧)如圖,拋物線y=ax2+c(a≠0)經(jīng)過C(2,0),D(0,-1)兩點,并與直線y=kx交于A、B兩點,直線l過點E(0,-2)且平行于x軸,過A、B兩點分別作直線l的垂線,垂足分別為點M、N.
(1)求此拋物線的解析式;
(2)求證:AO=AM;
(3)探究:
①當(dāng)k=0時,直線y=kx與x軸重合,求出此時
1
AM
+
1
BN
的值;
②試說明無論k取何值,
1
AM
+
1
BN
的值都等于同一個常數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南寧)如圖,AB是⊙O的直徑,弦CD交AB于點E,且AE=CD=8,∠BAC=
1
2
∠BOD,則⊙O的半徑為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南寧)如圖,圓錐形的煙囪底面半徑為15cm,母線長為20cm,制作這樣一個煙囪帽所需要的鐵皮面積至少是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南寧)如圖,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直徑,⊙O交BC于點D,DE⊥AC于點E,BE交⊙O于點F,連接AF,AF的延長線交DE于點P.
(1)求證:DE是⊙O的切線;
(2)求tan∠ABE的值;
(3)若OA=2,求線段AP的長.

查看答案和解析>>

同步練習(xí)冊答案