如圖,一等腰直角三角尺GEF(∠EGF=90°,∠GEF=∠GFE=45°,GE=GF)的兩條直角邊與正方形ABCD的兩條邊分別重合在一起.現(xiàn)正方形ABCD保持不動(dòng),將三角尺GEF繞斜邊EF的中點(diǎn)O(點(diǎn)O也是BD中點(diǎn))按順時(shí)針方向旋轉(zhuǎn).
(1)如圖2,當(dāng)EF與AB相交于點(diǎn)M,GF與BD相交于點(diǎn)N時(shí),通過觀察或測(cè)量BM,FN的長(zhǎng)度,猜想BM,FN相等嗎?并說明理由;
(2)若三角尺GEF旋轉(zhuǎn)到如圖3所示的位置時(shí),線段FE的延長(zhǎng)線與AB的延長(zhǎng)線相交于點(diǎn)M,線段BD的延長(zhǎng)線與GF的延長(zhǎng)線相交于點(diǎn)N,此時(shí),(1)中的猜想還成立嗎?請(qǐng)說明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
底邊 |
腰 |
BC |
AB |
1 |
2 |
| ||
2 |
3 |
5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
底邊 |
腰 |
BC |
AB |
3 |
3 |
8 |
5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
底邊 |
腰 |
BC |
AB |
2 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)
sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.
根據(jù)上述對(duì)角的正對(duì)定義,解下列問題:
(1)sad 的值為( ▼ )
A. B.1 C. D.2
(2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是 ▼ .
(3)已知,其中為銳角,試求sad的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年北京市昌平區(qū)初三上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)
sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.
根據(jù)上述對(duì)角的正對(duì)定義,解下列問題:
(1)sad 的值為( ▼ )
A. B. 1 C. D. 2
(2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是 ▼ .
(3)已知,其中為銳角,試求sad的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com