如圖1,△ABC是等邊三角形,點(diǎn)M是邊BC的中點(diǎn),∠AMN=60°,且MN交三角形外角的平分線CN于點(diǎn)N、求證:AM=MN.
思路點(diǎn)撥:取的AB中點(diǎn)P,連接PM,易證△APM≌△MCQ從而AM=MN.
如圖2,四邊形ABCD是正方形,點(diǎn)M是邊BC的中點(diǎn),CN是正方形ABCD的外角∠DCQ的平分線.
①填空:當(dāng)∠AMN=______°時(shí),AM=MN;
②證明①的結(jié)論.
請(qǐng)根據(jù)例題和問題(1)的解題過程,在正五邊形ABCDE中推廣出一個(gè)類似的真命題.(請(qǐng)?jiān)趫D3中作出相應(yīng)圖形,標(biāo)注必要的字母,并寫出已知和結(jié)論,無需證明.)

(1)解:①填空:當(dāng)∠AMN=90°時(shí),AM=MN;

②證明:取的AB中點(diǎn)P,連接PM,
∵四邊形ABCD是正方形,
∴∠PAM+∠AMB=90°,
∵∠AMN=90°,
∴∠CMN+∠AMB=90°,
∴∠PAM=∠CMN,
∵點(diǎn)M是邊BC的中點(diǎn),
點(diǎn)P是邊AB的中點(diǎn),
AB=BC,
∴AP=MC,
BP=BM,
∵∠B=90°,
∴△BPM是等腰直角三角形,
∴∠BPM=45°,
∴∠APM=135°,
∵∠DCB=90°,
∴∠DCQ=90°,
∴∠NCQ=45°,
∴∠MCN=135°,
∴∠APM=∠MCN,
∴△APM≌△MCN,
∴AM=MN;

(2)正五邊形ABCDE中點(diǎn)M是邊BC的中點(diǎn),CN是正五邊形ABCDE的外角∠DCQ的平分線,當(dāng)∠AMN=108°.
求證:AM=MN.
(圖形和文字均正確得,否則不得分)
分析:(1)當(dāng)∠AMN=90°時(shí),AM=MN.取的AB中點(diǎn)P,連接PM,根據(jù)正方形的性質(zhì),四邊相等,四個(gè)角都是直角,以及直角三角形中斜邊的中線等于斜邊的一半等結(jié)論,最后能證明△APM≌△MCQ從而得到結(jié)論.
(2)根據(jù)例題和問題(1)可知都是取一個(gè)邊的中點(diǎn),所以正五邊形ABCDE中點(diǎn)M是邊BC的中點(diǎn),CN是正五邊形ABCDE的外角∠DCQ的平分線,當(dāng)∠AMN=108°.求證:AM=MN.
點(diǎn)評(píng):本題考查理解題意能力,根據(jù)例題可類比做其他題目,本題考查了正方形的性質(zhì),全等三角形的判定和性質(zhì)以及等邊三角形的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、(1)如圖1,△ABC是等邊三角形,D是BC邊上一點(diǎn),CF平分∠ACG,E是CF上一點(diǎn),若∠ADE=60°求證:DA=DE
(2)如圖2,四邊形ABCD是正方形,M為AB上的一點(diǎn),BF平分∠CBG,E是BF上一點(diǎn),若DM⊥ME,與(1)中類似的結(jié)論是什么?(不必證明)
(3)在(2)若將DM⊥ME換為MD=ME,能不能證明DM⊥ME?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、已知△ABC,分別以AB、BC、CA為邊向形外作等邊三角形ABD、等邊三角形BCE、等邊三角形ACF.
(1)如圖,當(dāng)△ABC是等邊三角形時(shí),請(qǐng)你寫出滿足圖中條件,四個(gè)成立的結(jié)論;
(2)如圖,當(dāng)△ABC中只有∠ACB=60°時(shí),請(qǐng)你證明S△ABC與S△ABD的和等于S△BCE與S△ACF的和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鞍山一模)尺規(guī)作圖(保留作圖痕跡)
(1)如圖1,△ABC是等邊三角形,過點(diǎn)A作出BC邊上的高;
(2)如圖2,△ABC為任意三角形,過點(diǎn)B作BD⊥AC于點(diǎn)D;
(3)如圖3,現(xiàn)在有一塊直角三角形鋼板,∠ABC=90°,AC=10,AB=6,工人師傅想用它裁出面積最大的△ABP,且∠APB=60°,請(qǐng)?jiān)趫D中畫出符合要求的點(diǎn)P(尺規(guī)作圖,保留作圖痕跡)并求出的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列說法:
①如圖1,△ABC中,AB=AC,∠A=45°,則△ABC能被一條直線分成兩個(gè)小等腰三角形.
②如圖2,△ABC中,AB=AC,∠A=36°,BD,CE分別為∠ABC,∠ACB的角平分線,且相交于點(diǎn)F,則圖中等腰三角形有6個(gè).
③如圖3,△ABC是等邊三角形,CD⊥AD,且AD∥BC,則AD=
1
2
AB.
④如圖4,△ABC中,點(diǎn)E是AC上一點(diǎn),且AE=AB,連接BE并延長至點(diǎn)D,使AD=AC,∠DAC=∠CAB,則∠DBC=
1
2
∠DAB其中,正確的有
③④
③④
(請(qǐng)寫序號(hào),錯(cuò)選少選均不得分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24.數(shù)學(xué)課上,張老師出示了問題:如圖1,△ABC是等邊三角形,點(diǎn)D是邊BC的中點(diǎn).∠ADE=60°,且DE交△ABC外角∠ACF的平分線CE于點(diǎn)E,求證:AD=DE.
經(jīng)過思考,小明展示了一種正確的解題思路:取AB的中點(diǎn)M,連接MD,則△BMD是等邊三角形,易證△AMD≌△DCE,所以AD=DE.
在此基礎(chǔ)上,同學(xué)們作了進(jìn)一步的研究:
(1)小穎提出:如圖2,如果把“點(diǎn)D是邊BC的中點(diǎn)”改為“點(diǎn)D是邊BC上(除B,C外)的任意一點(diǎn)”,其它條件不變,那么結(jié)論“AD=DE”仍然成立,你認(rèn)為小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請(qǐng)說明理由;
(2)小亮提出:如圖3,點(diǎn)D是BC的延長線上(除C點(diǎn)外)的任意一點(diǎn),其他條件不變,結(jié)論“AD=DE”仍然成立.你認(rèn)為小華的觀點(diǎn)
正確
正確
(填“正確”或“不正確”).

查看答案和解析>>

同步練習(xí)冊(cè)答案