【題目】如圖,BD為四邊形ABCD的對(duì)角線,BC=AD,∠A=∠CBD,∠ABD=120°,AB=3,CD=,則BC的長為_____________.
【答案】7
【解析】如圖,過點(diǎn)D作DE//BA,并且使DE=BD,連接BE,AE,過點(diǎn)B作BF⊥DE于點(diǎn)F,過點(diǎn)A作AG⊥DE于點(diǎn)G,則四邊形ABFG是矩形,從而有FG=AB=3,AG=BF,通過證明△ADE≌△CBD,可得AE=CD=,根據(jù)已知易得△BDE是等邊三角形,根據(jù)等邊三角形的性質(zhì)可得DF=BD,BF=BD,在Rt△AEG中,利用勾股定理可求得BD=5,從而得AG=,DG=,在Rt△ADG中,根據(jù)勾股定理求得AD長即可得答案.
如圖,過點(diǎn)D作DE//BA,并且使DE=BD,連接BE,AE,過點(diǎn)B作BF⊥DE于點(diǎn)F,過點(diǎn)A作AG⊥DE于點(diǎn)G,則四邊形ABFG是矩形,
∴FG=AB=3,AG=BF,
∵AB//DE,∴∠ADE=∠BAD,
∵∠BAD=∠CBD,
∴∠ADE=∠CBD,
又∵DE=BD,AD=BC,
∴△ADE≌△CBD,
∴AE=CD=,
∵∠ABD=120°,DE//AB,
∴∠BDE=60°,
∴△BDE是等邊三角形,
∴DF=BD,BF=BD,
在Rt△AEG中, AE2=AG2+EG2,EG=DF+FG-DE=BD+3-BD=3-BD,
∴,
∴BD=5或BD=-2(舍去),
∴AG=,DG=DF+FG=+3=,
在Rt△ADG中,AD2=AG2+DG2=()2+()2=49,
∴AD=7,
∴BC=7,
故答案為:7.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八(6)班為從甲、乙兩同學(xué)中選出班長,進(jìn)行了一次演講答辯和民主測評(píng).其中,A、B、C、D、E五位老師作為評(píng)委,對(duì)演講答辯情況進(jìn)行評(píng)價(jià),結(jié)果如下表;另全班50位同學(xué)參與民主測評(píng)進(jìn)行投票,結(jié)果如下圖:
A | B | C | D | E | |
甲 | 89 | 91 | 92 | 94 | 93 |
乙 | 90 | 86 | 85 | 91 | 94 |
規(guī)定: 演講得分按“去掉一個(gè)最高分和一個(gè)最低分再算平均分”的方法確定;民主測評(píng)得分=“好”票數(shù)×2分+“較好”票數(shù)×1分+“一般”票數(shù)×0分.
(1)求甲、乙兩位選手各自演講答辯的平均分;
(2)民主測評(píng)統(tǒng)計(jì)圖中a= ,b= ;
(3)求甲、乙兩位選手的民主測評(píng)得分;
(4)若按演講答辯得分和民主測評(píng)6:4的權(quán)重比計(jì)算兩位選手的綜合得分,則應(yīng)選取哪位選手當(dāng)班長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AC,AD=AE,,若要得到△ABD≌△ACE,必須添加一個(gè)條件,則下列所添?xiàng)l件不恰當(dāng)?shù)氖?( ).
A. BD=CEB. ∠ABD=∠ACEC. ∠BAD=∠CAED. ∠BAC=∠DAE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°
(1)求證△ABD≌△ACE
(2)求∠3度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,與相交于點(diǎn),,那么下列條件中不能判定四邊形是菱形的為( )
A. ∠OAB=∠OBAB. ∠OBA=∠OBCC. AD∥BCD. AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:將矩形紙片ABCD折疊,使點(diǎn)A與點(diǎn)C重合(點(diǎn)D與D'為對(duì)應(yīng)點(diǎn)),折痕為EF,連接AF.
(1)如圖1,求證:四邊形AECF為菱形;
(2)如圖2,若FC=2DF,連接AC交EF于點(diǎn)O,連接DO、D'O,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖2中所有等邊三角形.
(圖1) (圖2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是等邊三角形,是等腰直角三角形,,于點(diǎn),連分別交,于點(diǎn),,過點(diǎn)作交于點(diǎn),則下列結(jié)論:
①;②;③;④;⑤..其中正確結(jié)論的個(gè)數(shù)為( )
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)[(-3a2b3)3]2;
(2)(-2xy2)6+(-3x2y4)3;
(3);
(4)(0.5×3)199×(-2× )200.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉淇準(zhǔn)備完成題目:化簡:,發(fā)現(xiàn)系數(shù)“”印刷不清楚.
(1)他把“”猜成3,請(qǐng)你化簡:(3x2+6x+8)–(6x+5x2+2);
(2)他媽媽說:“你猜錯(cuò)了,我看到該題標(biāo)準(zhǔn)答案的結(jié)果是常數(shù).”通過計(jì)算說明原題中“”是幾?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com