【題目】學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對(duì)“兩個(gè)三角形滿足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等”的情形進(jìn)行研究.
【初步思考】
我們不妨將問題用符號(hào)語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對(duì)∠B進(jìn)行分類,可分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.
【深入探究】
第一種情況:當(dāng)∠B是直角時(shí),△ABC≌△DEF.
(1)如圖①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù)______,可以知道Rt△ABC≌Rt△DEF.
第二種情況:當(dāng)∠B是鈍角時(shí),△ABC≌△DEF.
(2)如圖②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF.
第三種情況:當(dāng)∠B是銳角時(shí),△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請(qǐng)你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等.(不寫作法,保留作圖痕跡)
(4)∠B還要滿足什么條件,就可以使△ABC≌△DEF?請(qǐng)直接寫出結(jié)論:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若______,則△ABC≌△DEF.
【答案】(1)根據(jù)直角三角形全等的方法“HL”證明;(2)證明見解析;(3)作圖見解析;(4)∠B≥∠A
【解析】試題分析:(1)根據(jù)直角三角形全等的方法“HL”證明;
(2)過點(diǎn)C作CG⊥AB交AB的延長線于G,過點(diǎn)F作FH⊥DE交DE的延長線于H,根據(jù)等角的補(bǔ)角相等求出∠CBG=∠FEH,再利用“角角邊”證明△CBG和△FEH全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得CG=FH,再利用“HL”證明Rt△ACG和Rt△DFH全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠A=∠D,然后利用“角角邊”證明△ABC和△DEF全等;
(3)以點(diǎn)C為圓心,以AC長為半徑畫弧,與AB相交于點(diǎn)D,E與B重合,F與C重合,得到△DEF與△ABC不全等;
(4)根據(jù)三種情況結(jié)論,∠B不小于∠A即可.
(1)解:HL;
(2)證明:如圖,過點(diǎn)C作CG⊥AB交AB的延長線于G,過點(diǎn)F作FH⊥DE交DE的延長線于H,
∵∠ABC=∠DEF,且∠ABC、∠DEF都是鈍角,
∴180°﹣∠ABC=180°﹣∠DEF,
即∠CBG=∠FEH,
在△CBG和△FEH中,
,
∴△CBG≌△FEH(AAS),
∴CG=FH,
在Rt△ACG和Rt△DFH中,
,
∴Rt△ACG≌Rt△DFH(HL),
∴∠A=∠D,
在△ABC和△DEF中,
,
∴△ABC≌△DEF(AAS);
(3)解:如圖,△DEF和△ABC不全等;
(4)解:若∠B≥∠A,則△ABC≌△DEF.
故答案為:(1)HL;(4)∠B≥∠A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】能使兩個(gè)直角三角形全等的條件是( )
A.兩直角邊對(duì)應(yīng)相等B.一銳角對(duì)應(yīng)相等
C.兩銳角對(duì)應(yīng)相等D.斜邊相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P(8,3)向上平移6個(gè)單位長度,下列說法正確的是( )
A.點(diǎn)P的橫坐標(biāo)加6,縱坐標(biāo)不變
B.點(diǎn)P的縱坐標(biāo)加6,橫坐標(biāo)不變
C.點(diǎn)P的橫坐標(biāo)減6,縱坐標(biāo)不變
D.點(diǎn)P的縱坐標(biāo)減6,橫坐標(biāo)不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將點(diǎn)P(-2,3)沿x軸方向向右平移3個(gè)單位得到點(diǎn)Q,則點(diǎn)Q的坐標(biāo)是( )
A.(-2,6)
B.(-2,0)
C.(1,3)
D.(-5,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB上有兩點(diǎn)C,D,且AC∶CD∶DB=2∶3∶4,E,F(xiàn)分別為AC,DB的中點(diǎn),EF=2.4 cm,求線段AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016山西省第22題)綜合與實(shí)踐
問題情境
在綜合與實(shí)踐課上,老師讓同學(xué)們以“菱形紙片的剪拼”為主題開展數(shù)學(xué)活動(dòng),如圖1,將一張菱形紙片ABCD()沿對(duì)角線AC剪開,得到和.
操作發(fā)現(xiàn)
(1)將圖1中的以A為旋轉(zhuǎn)中心,逆時(shí)針方向旋轉(zhuǎn)角,使 ,得到如圖2所示的,分別延長BC 和交于點(diǎn)E,則四邊形的狀是 ;
(2)創(chuàng)新小組將圖1中的以A為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn)角,使,得到如圖3所
示的,連接DB,,得到四邊形,發(fā)現(xiàn)它是矩形.請(qǐng)你證明這個(gè)論;
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,量得圖3中BC=13cm,AC=10cm,然后提出一個(gè)問題:將沿著射線DB方向平移acm,得到,連接,,使四邊形恰好為正方形,求a的值.請(qǐng)你解答此問題;
(4)請(qǐng)你參照以上操作,將圖1中的在同一平面內(nèi)進(jìn)行一次平移,得到,在圖4中畫出平移后構(gòu)造出的新圖形,標(biāo)明字母,說明平移及構(gòu)圖方法,寫出你發(fā)現(xiàn)的結(jié)論,不必證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】線段CD是由線段AB平移得到的,點(diǎn)A(﹣1,5)的對(duì)應(yīng)點(diǎn)為C(4,8),則點(diǎn)B(﹣4,﹣2)的對(duì)應(yīng)點(diǎn)D的坐標(biāo)為( )
A.(﹣9,﹣5)
B.(﹣9,1)
C.(1,﹣5)
D.(1,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上表示下列各數(shù),并按從小到大的順序用“<”把這些數(shù)連接起來:
﹣4.5, 0, 3, ﹣3, , ﹣0.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了加強(qiáng)學(xué)生的安全意識(shí),某校組織了學(xué)生參加安全知識(shí)競賽,從中抽取了部分學(xué)生成績(得分?jǐn)?shù)取正
整數(shù),滿分為分)進(jìn)行統(tǒng)計(jì),已知組的頻數(shù)比組的頻數(shù)小,繪制統(tǒng)計(jì)頻數(shù)分別直方圖(未完成)
和扇形統(tǒng)計(jì)圖如下,
請(qǐng)解答下列問題:
()樣本容量為:__________, 為__________.
()為__________, 組所占比例為__________.
()補(bǔ)全頻數(shù)分布直方圖.
()若成績?cè)?/span>分以上記作優(yōu)秀,全校共有名學(xué)生,估計(jì)成績優(yōu)秀學(xué)生有__________名.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com