如圖,矩形ABCD中,MN∥AD,PQ∥AB,則S1與S2的大小關系是   
【答案】分析:設AM=y,MK=x,故S1=xy,KN=a,KQ=b,故S2=ab,由勾股定理推得:S2=ab=xy,從而得到S1=S2
解答:解:設AM=y,MK=x,故S1=xy
KN=a,KQ=b,故S2=ab.BD2=AD2+AB2=(x+a)2+(y+b)2
DK=,BK=
∴(+2=(x+a)2+(y+b)2
化簡可得(ab-xy)2=0,
ab-xy=0,
故ab=xy.
∴S1=S2
點評:本題考查的是矩形的性質,但需要需注意的是要把等量關系轉化求解.本題難度中上.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,矩形ABCD中,AB=6,BC=8,M是BC的中點,DE⊥AM,E是垂足,則△ABM的面積為
 
;△ADE的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,矩形ABCD中,AD=a,AB=b,要使BC邊上至少存在一點P,使△ABP、△APD、△CDP兩兩相似,則a、b間的關系式一定滿足(  )
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、如圖,矩形ABCD中,AE⊥BD,垂足為E,∠DAE=2∠BAE,則∠CAE=
30
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2008•懷柔區(qū)二模)已知如圖,矩形ABCD中,AB=3cm,BC=4cm,E是邊AD上一點,且BE=ED,P是對角線上任意一點,PF⊥BE,PG⊥AD,垂足分別為F、G.則PF+PG的長為
3
3
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2002•西藏)已知:如圖,矩形ABCD中,E、F是AB邊上兩點,且AF=BE,連結DE、CF得到梯形EFCD.
求證:梯形EFCD是等腰梯形.

查看答案和解析>>

同步練習冊答案