精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AD是ABC的角平分線,以AD為弦的O交AB、AC于E、F,已知EF∥BC.

(1)求證:BC是O的切線;

(2)若已知AE=9,CF=4,求DE長;

(3)在(2)的條件下,若BAC=60°,求tanAFE的值及GD長.

【答案】1證明見解析2DE=63

【解析】試題分析:1)連接OD,由角平分線的定義得到∠1=2,得到,根據垂徑定理得到ODEF,根據平行線的性質得到ODBC,于是得到結論;

2)連接DE,由,得到DE=DF,根據平行線的性質得到∠3=4,等量代換得到∠1=4,根據相似三角形的性質即可得到結論;

3)過FFHBCH,由已知條件得到∠1=2=3=4=30°,解直角三角形得到FH=DF=×6=3,DH=3,CH=,根據三角函數的定義得到tanAFE=tanC=;根據相似三角形到現在即可得到結論.

試題解析:1連接OD,

ADABC的角平分線,

∴∠1=2

,

ODEF,

EFBC,

ODBC,

BC是⊙O的切線;

2連接DE,

,

DE=DF,

EFBC,

∴∠3=4

∵∠1=3,

∴∠1=4,

∵∠DFC=AED,

AED∽△DFC

,即

DE2=36,

DE=6;

3FFHBCH

∵∠BAC=60°,

∴∠1=2=3=4=30°,

FH=DF==3,DH=3,

CH=

EFBC,

∴∠C=AFE,

tanAFE=tanC=;

∵∠4=2C=C,

∴△ADC∽△DFC,

∵∠5=53=2,

∴△ADF∽△FDG

,

,即,

DG=

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,點A11),B3,2),將點A向左平移兩個單位,再向上平移4個單位得到點C

1)寫出點C坐標;

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,是等腰直角三角形,,ADBC邊上的中線,過CAD的垂線,交AB于點E,交AD于點O,求證:.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△AOB中,AO=AB,在直角坐標系中,點A的坐標是(2,2),點O的坐標是(0,0),將△AOB平移得到△A′O′B′,使得點A′y軸上.點O′、B′x軸上.則點B'的坐標是______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】四邊形ABCD中,ADBC,要判別四邊形ABCD是平行四邊形,還需滿足條件(

A. A+C=180°B. B+D=180°

C. A+B=180°D. A+D=180°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某家電銷售商城電冰箱的銷售價為每臺2100元,空調的銷售價為每臺1750元,每臺電冰箱的進價比每臺空調的進價多400元,商城用80000元購進電冰箱的數量與用64000元購進空調的數量相等.

1)求每臺電冰箱與空調的進價分別是多少;

2)現在商城準備一次購進這兩種家電共100臺,設購進電冰箱x臺,這100臺家電的銷售總利潤為y元,要求購進空調數量不超過電冰箱數量的2倍,總利潤不低于13000元,請分析合理的方案共有多少種,并確定獲利最大的方案以及最大利潤;

3)實際進貨時,廠家對電冰箱出廠價下調k0k100)元,若商店保持這兩種家電的售價不變,請你根據以上信息及(2)問中條件,設計出使這100臺家電銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在等腰直角△ABC中,∠ACB=90°O是斜邊AB的中點,點D,E分別在直角邊AC,BC上,且∠DOE=90°,DEOC于點P.則下列結論:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)ABC的面積等于四邊形CDOE面積的2倍;(4)OD=OE.其中正確的結論有( )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點ABC分別是⊙O上的點,∠B=60°,AC=3,CD⊙O的直徑,PCD延長線上的一點,且AP=AC

1)求證:AP⊙O的切線;

2)求PD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面上取定一點O稱為極點;從點O出發(fā)引一條射線Ox稱為極軸;線段OP的長度稱為極徑。點P的極坐標就可以用線段OP的長度以及從Ox轉動到OP的角度(規(guī)定逆時針方向轉動角度為正)來確定,P(3,60°)P(3,300°)P(3,420°),則點P關于點O成中心對稱的點Q的極坐標可以表示為_____.

查看答案和解析>>

同步練習冊答案