【題目】如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(﹣2,0)、(0,1),⊙C 的圓心坐標(biāo)為(0,﹣1),半徑為1.若D是⊙C上的一個(gè)動(dòng)點(diǎn),射線AD與y軸交于點(diǎn)E,則△ABE面積的最大值是(
A.3
B.
C.
D.4

【答案】B
【解析】解:當(dāng)射線AD與⊙C相切時(shí),△ABE面積的最大.

連接AC,

∵∠AOC=∠ADC=90°,AC=AC,OC=CD,

∴Rt△AOC≌Rt△ADC,

∴AD=AO=2,

連接CD,設(shè)EF=x,

∴DE2=EFOE,

∵CF=1,

∴DE= ,

∴△CDE∽△AOE,

= ,

= ,

解得x=

S△ABE= = =

故選:B.

【考點(diǎn)精析】掌握三角形的面積和切線的性質(zhì)定理是解答本題的根本,需要知道三角形的面積=1/2×底×高;切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,池塘邊有一塊長(zhǎng)為18m,寬為10m的長(zhǎng)方形土地,現(xiàn)在將其 余三面留出寬都是xm的小路,中間余下的長(zhǎng)方形部分做菜地,用整式表示:

(1)菜地的長(zhǎng)a m,寬b m

(2)菜地面積S m2;

(3)當(dāng)x0.5m時(shí),菜地面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某蔬菜生產(chǎn)基地用裝有恒溫系統(tǒng)的大棚栽培一種適宜生長(zhǎng)溫度為15﹣20℃的新品種,如圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚里溫度y(℃)隨時(shí)間x(h)變化的函數(shù)圖象,其中AB段是恒溫階段,BC段是雙曲線y= 的一部分,請(qǐng)根據(jù)圖中信息解答下列問題:
(1)求k的值;
(2)恒溫系統(tǒng)在一天內(nèi)保持大棚里溫度在15℃及15℃以上的時(shí)間有多少小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是我國(guó)幾家銀行的標(biāo)志,其中即是軸對(duì)稱圖形又是中心對(duì)稱圖形的有( )
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將三角形ABC向右平移5個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度請(qǐng)回答下列問題:

1)平移后的三個(gè)頂點(diǎn)坐標(biāo)分別為:A1   ,B1   ,C1   

2)畫出平移后三角形A1B1C1;

3)求三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將兩張完全相同的矩形紙片ABCD、FBED按如圖方式放置,BD為重合的對(duì)角線.重疊部分為四邊形DHBG,

(1)試判斷四邊形DHBG為何種特殊的四邊形,并說明理由;
(2)若AB=8,AD=4,求四邊形DHBG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為r(r>1),P是圓內(nèi)與圓心C不重合的點(diǎn),⊙C的“完美點(diǎn)”的定義如下:若直線CP與⊙C交于點(diǎn)A,B,滿足|PA﹣PB|=2,則稱點(diǎn)P為⊙C的“完美點(diǎn)”,如圖為⊙C及其“完美點(diǎn)”P的示意圖.

(1)當(dāng)⊙O的半徑為2時(shí),
①點(diǎn)M( ,0)⊙O的“完美點(diǎn)”,點(diǎn)N(0,1)⊙O的“完美點(diǎn)”,點(diǎn)T(﹣ ,﹣ ⊙O的“完美點(diǎn)”(填“是”或者“不是”);
②若⊙O的“完美點(diǎn)”P在直線y= x上,求PO的長(zhǎng)及點(diǎn)P的坐標(biāo);
(2)⊙C的圓心在直線y= x+1上,半徑為2,若y軸上存在⊙C的“完美點(diǎn)”,求圓心C的縱坐標(biāo)t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(0,1),取一點(diǎn)B(b,0),連接AB,做線段AB的垂直平分線l1 , 過點(diǎn)B作x軸的垂線l2 , 記l1 , l2的交點(diǎn)為P.

(1)當(dāng)b=3時(shí),在圖1中補(bǔ)全圖形(尺規(guī)作圖,不寫作法,保留作圖痕跡);
(2)小慧多次取不同數(shù)值b,得出相應(yīng)的點(diǎn)P,并把這些點(diǎn)用平滑的曲線連接起來發(fā)現(xiàn):這些點(diǎn)P竟然在一條曲線L上!
①設(shè)點(diǎn)P的坐標(biāo)為(x,y),試求y與x之間的關(guān)系式,并指出曲線L是哪種曲線;
②設(shè)點(diǎn)P到x軸,y軸的距離分別是d1 , d2 , 求d1+d2的范圍,當(dāng)d1+d2=8時(shí),求點(diǎn)P的坐標(biāo);
③將曲線L在直線y=2下方的部分沿直線y=2向上翻折,得到一條“W”形狀的新曲線,若直線y=kx+3與這條“W”形狀的新曲線有4個(gè)交點(diǎn),直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家飲水機(jī)中原有水的溫度為20℃,通電開機(jī)后,飲水機(jī)自動(dòng)開始加熱[此過程中水溫y(℃)與開機(jī)時(shí)間x(分)滿足一次函數(shù)關(guān)系],當(dāng)加熱到100℃時(shí)自動(dòng)停止加熱,隨后水溫開始下降[此過程中水溫y(℃)與開機(jī)時(shí)間x(分)成反比例關(guān)系],當(dāng)水溫降至20℃時(shí),飲水機(jī)又自動(dòng)開始加熱…,重復(fù)上述程序(如圖所示),根據(jù)圖中提供的信息,解答下列問題:
(1)當(dāng)0≤x≤8時(shí),求水溫y(℃)與開機(jī)時(shí)間x(分)的函數(shù)關(guān)系式;
(2)求圖中t的值;
(3)若小明在通電開機(jī)后即外出散步,請(qǐng)你預(yù)測(cè)小明散步45分鐘回到家時(shí),飲水機(jī)內(nèi)的溫度約為多少℃?

查看答案和解析>>

同步練習(xí)冊(cè)答案