【題目】如圖反映的是小華從家里跑步去體育館,在那里鍛煉了一陣后又走到文具店去買筆,然后走回家,其中x表示時間,y表示小華離家的距離.根據(jù)圖像回答下列問題:

(1)小華在體育館鍛煉了_____分鐘;

(2)體育館離文具店______千米;

(3)小華從家跑步到體育館,從文具店散步回家的速度分別是多少千米/分鐘?

【答案】(1)15(2)1(3)小華從家跑步到體育場的速度是千米/分鐘,小華從文具店散步回家的速度為千米/分鐘

【解析】

1)觀察函數(shù)圖象找出到達和離開體育館的時間,二者做差即可得出結(jié)論;

2)觀察函數(shù)圖象找出體院館和文具店離家的距離,二者做差即可得出結(jié)論;

3)根據(jù)速度=路程÷時間,即可分別算出小華從家跑步到體育場和從文具店散步回家的速度,此題得解.

130-15=15(分鐘).

故答案為:15

22.5-1.5=1(千米).

故答案為:1

3)小華從家跑步到體育場的速度為:2.5÷15=(千米/分鐘);

小華從文具店散步回家的速度為:1.5÷100-65=(千米/分鐘).

答:小華從家跑步到體育場的速度是千米/分鐘,小華從文具店散步回家的速度為千米/分鐘.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,點A1,8),B1,6),C76).

(1)請直接寫出點D的坐標(biāo);

(2)連接線段OBODBD,請求出△OBD的面積;

(3)若長方形ABCD以每秒1個單位長度的速度向下運動,設(shè)運動的時間為t秒,是否存在某一時刻,使△OBD的面積與長方形ABCD的面積相等?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在求同一坐標(biāo)軸上兩點間的距離時發(fā)現(xiàn),對于平面直角坐標(biāo)系內(nèi)任意兩點P1(x1 , y1),P2(x2 , y2),可通過構(gòu)造直角三角形利用圖1得到結(jié)論:P1P2= 他還利用圖2證明了線段P1P2的中點P(x,y)P的坐標(biāo)公式:x= ,y=

(1)請你幫小明寫出中點坐標(biāo)公式的證明過程;
(2)①已知點M(2,﹣1),N(﹣3,5),則線段MN長度為;
②直接寫出以點A(2,2),B(﹣2,0),C(3,﹣1),D為頂點的平行四邊形頂點D的坐標(biāo):;
(3)如圖3,點P(2,n)在函數(shù)y= x(x≥0)的圖象OL與x軸正半軸夾角的平分線上,請在OL、x軸上分別找出點E、F,使△PEF的周長最小,簡要敘述作圖方法,并求出周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,AB=ACD,E是斜邊BC上兩點,且∠DAE=45°,將△ABE繞點A順時針旋轉(zhuǎn)90°后,得到△ACF,連接DF,則下列結(jié)論中有( )個是正確的。

①∠DAF=45° ②△ABE≌△ACD ③AD平分∠EDF ④

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周末,小李8時騎自行車從家里出發(fā),到野外郊游,16時回到家里.他離家的距離s(千米)與時間t()之間的關(guān)系可以用圖中的折線表示.現(xiàn)有如下信息:

①小李到達離家最遠(yuǎn)的地方是14時;

②小李第一次休息時間是10時;

11時到12時,小李騎了5千米;

④返回時,小李的平均速度是10千米/.

其中,正確的有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售A型和B型兩種電腦,其中A型電腦每臺的利潤為400元,B型電腦每臺的利潤為500元.該商店計劃再一次性購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設(shè)購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.

(1)求y關(guān)于x的函數(shù)關(guān)系式;

(2)該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大,最大利潤是多少?

(3)實際進貨時,廠家對A型電腦出廠價下調(diào)a(0<a<200)元,且限定商店最多購進A型電腦60臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息,設(shè)計出使這100臺電腦銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A、C的坐標(biāo)分別為(﹣4,5),(﹣1,3).

1)請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;

2)請把ABC先向右移動5個單位,再向下移動3個單位得到ABC,在圖中畫出ABC;

3)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠MON=51°,點P在∠MON的內(nèi)部,點D是邊ON上任意一點,點C是邊OM上任意一點,連接PD、PC,當(dāng)PCD的周長最小時,∠CPD的度數(shù)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩塊相同的三角板完全重合在一起,∠A=30°,AC=10,把上面一塊繞直角頂點B逆時針旋轉(zhuǎn)到△A′BC′的位置,點C′在AC上,A′C′與AB相交于點D,則C′D=

查看答案和解析>>

同步練習(xí)冊答案