如圖,正方形ABCD中,P為CD上一點,將正方形沿BP折疊,使C點落在點E處,若∠DPE=40°,則∠DAE的度數(shù)為( 。
A.20°B.25°C.35°D.40°

∵四邊形ABCD是正方形,
∴AB=BC,∠DAB=∠ABC=∠C=90°,
由折疊的性質(zhì)可得:∠PBC=∠PBE,∠BPE=∠BPC,BC=BE,
∴AB=BE,
∵∠DPE=40°,
∴2∠BPC=180°-∠DPE=140°,
∴在Rt△PBC中,∠PBC=90°-∠BPC=20°,
∴∠ABE=90°-∠PBC-∠PBE=90°-20°-20°=50°,
∵AB=BE,
∴∠BAE=∠BEA=
180°-∠ABE
2
=65°,
∴∠DAE=90°-∠BAE=35°.
故選C.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,沿虛線EF將平行四邊形ABCD剪開,則得到的四邊形ABFE是( 。
A.梯形B.平行四邊形C.矩形D.菱形

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在矩形ABCD中,AB=1,BC=2,將其折疊,使AB邊落在對角線AC上,得到折痕AE,則點E到點B的距離為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,△ABE和△ADC是△ABC分別沿著AB、AC翻折180°形成的,若∠1:∠2:∠3=27:5:4,則∠α的度數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

按下列要求正確畫出圖形:
(1)已知△ABC和直線PQ,畫出△ABC關(guān)于直線PQ對稱的△A′B′C′;
(2)已知△ABC和點O,畫出△ABC關(guān)于點O成中心對稱的△A′B′C′.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(不寫作法,保留作圖痕跡)
(1)如圖,點A、B在直線l的同旁,在直線l上求一點P,使得PA+PB的值最小.

(2)如圖,在平面直角坐標系xoy中,A(-1,5),B(-1,0),C(-4,3),要求作出△ABC關(guān)于y
軸的對稱圖形△A1B1C1,寫出點A1,B1,C1的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下面圖形中,是中心對稱圖形的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列圖形中既是中心對稱圖形,又是軸對稱圖形的是

A.                B.             C.               D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)請畫出△ABC關(guān)于y軸對稱的△A′B′C′(其中A′,B′,C′分別是A,B,C的對應(yīng)點,不寫畫法);
(2)直接寫出A′,B′,C′三點的坐標.

查看答案和解析>>

同步練習冊答案