【題目】(1)如圖1,AB∥CD,∠A=38°,∠C=50°,求∠APC的度數(shù).(提示:作PE∥AB).
(2)如圖2,AB∥DC,當(dāng)點(diǎn)P在線段BD上運(yùn)動(dòng)時(shí),∠BAP=∠α,∠DCP=∠β,求∠CPA與∠α,∠β之間的數(shù)量關(guān)系,并說明理由.
(3)在(2)的條件下,如果點(diǎn)P在段線OB上運(yùn)動(dòng),請(qǐng)你直接寫出∠CPA與∠α,∠β之間的數(shù)量關(guān)系______.
【答案】(1)88°(2)∠APC=∠α+∠β,理由見解析(3)∠APC=∠β-∠α
【解析】
(1)過點(diǎn)P作PE∥AB,通過平行線性質(zhì)來求∠APC.
(2)過P作PE∥AD交AC于E,推出AB∥PE∥DC,根據(jù)平行線的性質(zhì)得出∠α=∠APE,∠β=∠CPE,即可得出答案;
(3)若P在段線OB上,畫出圖形,根據(jù)平行線的性質(zhì)得出∠α=∠APE,∠β=∠CPE,依據(jù)角的和差關(guān)系即可得出答案.
(1)如圖1,過P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠A=∠APE,∠C=∠CPE,
∵∠A=38°,∠C=50°,
∴∠APE=38°,∠CPE=50°,
∴∠APC=∠APE+∠CPE=38°+50°=88°;
(2)∠APC=∠α+∠β,
理由是:如圖2,過P作PE∥AB,交AC于E,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠APE=∠PAB=∠α,∠CPE=∠PCD=∠β,
∴∠APC=∠APE+∠CPE=∠α+∠β;
(3)如圖3,過P作PE∥AB,交AC于E,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠PAB=∠APE=∠α,∠PCD=∠CPE=∠β,
∵∠APC=∠CPE-∠APE,
∴∠APC=∠β-∠α.
故答案為:∠APC=∠β-∠α.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店有一款暢銷服裝原價(jià)為40元,該商店規(guī)定:若顧客購買服裝數(shù)量在20件以內(nèi),則按原價(jià)進(jìn)行銷售:若顧客購買服裝數(shù)量超過20件,超過的部分每件可以享受指定的折扣,現(xiàn)八班同學(xué)為參加學(xué)校秋季運(yùn)動(dòng)會(huì),準(zhǔn)備統(tǒng)一向該商店購買該款服裝,所需費(fèi)用元與購買數(shù)量件之間的函數(shù)關(guān)系如圖所示,那么購買數(shù)量超過20件的部分每件享受到的折扣是
A. 9折B. 8折C. 折D. 7折
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了更好改善河流的水質(zhì),治污公司決定購買10臺(tái)污水處理設(shè)備.現(xiàn)有A,B兩種型號(hào)的設(shè)備,經(jīng)過市場(chǎng)調(diào)查,購買一臺(tái)型設(shè)備比購買一臺(tái)型設(shè)備多花費(fèi)2萬元,購買2臺(tái)A型設(shè)備比購買3臺(tái)B型設(shè)備少花費(fèi)6萬元.
(1)購買一臺(tái)A型設(shè)備、購買一臺(tái)B型設(shè)備各需要多少萬元;
(2)治污公司經(jīng)預(yù)算購買污水處理設(shè)備的資金不超過105萬元,你認(rèn)為該公司有哪幾種購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O.
(1)求證:△AEC≌△BED;
(2)若∠1=40°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)C在線段AB上,(點(diǎn)C不與A、B重合),分別以AC、BC為邊在AB同側(cè)作等邊三角形ACD和等邊三角形BCE,連接AE、BD交于點(diǎn)P.
(觀察猜想)
①AE與BD的數(shù)量關(guān)系是 ;
②∠APD的度數(shù)為 .
(數(shù)學(xué)思考)
如圖2,當(dāng)點(diǎn)C在線段AB外時(shí),(1)中的結(jié)論①、②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫出正確結(jié)論再給予證明;
(拓展應(yīng)用)
如圖3,點(diǎn)E為四邊形ABCD內(nèi)一點(diǎn),且滿足∠AED=∠BEC=90°,AE=DE,BE=CE,對(duì)角線AC、BD交于點(diǎn)P,AC=10,則四邊形ABCD的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知1+2+1=4=22,1+2+3+2+1=9=32,1+2+3+4+3+2+1=16=42,1+2+3+4+5+4+3+2+1=25=52.根據(jù)上面四式的計(jì)算規(guī)律求:1+2+3+…+2014+2015+2016+2015+2014+…+3+2+1=________(寫出某數(shù)的平方即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與x軸,y軸分別交于點(diǎn)A,B,將沿過點(diǎn)A的直線折疊,使點(diǎn)B落在x軸的負(fù)半軸上,記作點(diǎn)C,折痕與y軸交于點(diǎn)D,則點(diǎn)D的坐標(biāo)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com