【題目】完成下列各題:
(1)如圖,已知直線AB與⊙O相切于點C,且AC=BC,求證:OA=OB.
(2)如圖,矩形ABCD的兩條對角線相交于點O,∠AOD=120°,AB=3,求AC的長.
【答案】
(1)證明:連接OC,
∵直線AB與⊙O相切于點C,
∴OC⊥AB,
又∵AC=BC,
∴OC垂直平分AB,
∴OA=OB
(2)證明:∵四邊形ABCD是矩形,
∴AC=BD,OA=OC= AC,BO=DO= BD,∠BAD=90°,
∴OA=OB,
∵∠AOD=120°,
∴∠AOB=60°,
∴△AOB是等邊三角形,
∴∠ABO=60°,∠ADB=30°,
∴AC=BD=2AB=6cm
【解析】(1)根據(jù)線段垂直平分線的性質(zhì):線段垂直平分線上的點到兩端點的距離相等來證明;(2)根據(jù)矩形性質(zhì)得出AC=BD,OA=OB,求出∠AOB=60°,得出△AOB是等邊三角形,求出∠ADB=30°,得出AC=BD=2AB=6cm即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】多好佳水果店在批發(fā)市場購買某種水果銷售,第一次用1500元購進若干千克,并以每千克9元出售,很快售完.由于水果暢銷,第二次購買時,每千克的進價比第一次提高了10%,用1694元所購買的水果比第一次多20千克,以每千克10元售出100千克后,因出現(xiàn)高溫天氣,水果不易保鮮,為減少損失,便降價45%售完剩余的水果.
(1)第一次水果的進價是每千克多少元?
(2)該水果店在這兩次銷售中,總體上是盈利還是虧損?盈利或虧損了多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,過點B的直線MN∥AC,D為BC邊上一點,連接AD,作DE⊥AD交MN于點E,連接AE.
(1)如圖①,當(dāng)∠ABC=45°時,求證:AD=DE;
(2)如圖②,當(dāng)∠ABC=30°時,線段AD與DE有何數(shù)量關(guān)系?并請說明理由;
(3)當(dāng)∠ABC=α?xí)r,請直接寫出線段AD與DE的數(shù)量關(guān)系.(用含α的三角函數(shù)表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生課外閱讀的喜好,某校從八年級隨機抽取部分學(xué)生進行問卷調(diào)查,調(diào)查要求每人只選取一種喜歡的書籍,如果沒有喜歡的書籍,則作“其它”類統(tǒng)計。圖(1)與圖(2)是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖。以下結(jié)論不正確的是( )
A. 由這兩個統(tǒng)計圖可知喜歡“科普常識”的學(xué)生有90人.
B. 若該年級共有1200名學(xué)生,則由這兩個統(tǒng)計圖可估計喜愛“科普常識”的學(xué)生約有360個.
C. 由這兩個統(tǒng)計圖不能確定喜歡“小說”的人數(shù).
D. 在扇形統(tǒng)計圖中,“漫畫”所在扇形的圓心角為72°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y= (x>0)與一次函數(shù)y=kx+6 交于點C(2,4 ),一次函數(shù)圖象與兩坐標(biāo)軸分別交于點A和點B,動點P從點A出發(fā),沿AB以每秒1個單位長度的速度向點B運動;同時,動點Q從點O出發(fā),沿OA以相同的速度向點A運動,運動時間為t秒(0<t≤6),以點P為圓心,PA為半徑的⊙P與AB交于點M,與OA交于點N,連接MN、MQ.
(1)求m與k的值;
(2)當(dāng)t為何值時,點Q與點N重合;
(3)若△MNQ的面積為S,試求S與t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB、AC邊的垂直平分線分別交BC邊于點M、N.
(1)如圖①,若△AMN是等邊三角形,則∠BAC= °;
(2)如圖②,若∠BAC=135°,求證:BM2+CN2=MN2.
(3)如圖③,∠ABC的平分線BP和AC邊的垂直平分線相交于點P,過點P作PH垂直BA的延長線于點H.若AB=4,CB=10,求AH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△AOB中,∠AOB=90°,OA在x軸上,OB在y軸上,點A,B的坐標(biāo)分別為( ,0),(0,1),把Rt△AOB沿著AB對折得到Rt△AO′B,則點O′的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上點 A、B 到表示-2 的點的距離都為 6,P 為線段 AB 上任一點,C,D 兩點分別從 P,B 同時向 A 點移動,且 C 點運動速度為每秒 2 個單位長度,D 點運動速度 為每秒 3 個單位長度,運動時間為 t 秒.
(1)A 點表示數(shù)為 ,B 點表示的數(shù)為 ,AB= .
(2)若 P 點表示的數(shù)是 0,
①運動 1 秒后,求 CD 的長度;
②當(dāng) D 在 BP 上運動時,求線段 AC、CD 之間的數(shù)量關(guān)系式.
(3)若 t=2 秒時,CD=1,請直接寫出 P 點表示的數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com