【題目】如圖所示,正方形ABCD的邊長為8,M在DC上,且DM=2,N是AC上的一動點,求DN+MN的最小值.
【答案】解:如圖,連接BM,
∵點B和點D關(guān)于直線AC對稱,
∴NB=ND,
則BM就是DN+MN的最小值,
∵正方形ABCD的邊長是8,DM=2,
∴CM=6,
∴BM= =10,
∴DN+MN的最小值是10.
【解析】要求DN+MN的最小值,DN,MN不能直接求,可考慮通過作輔助線轉(zhuǎn)化DN,MN的值,從而找出其最小值求解.
【考點精析】解答此題的關(guān)鍵在于理解正方形的性質(zhì)的相關(guān)知識,掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形,以及對軸對稱-最短路線問題的理解,了解已知起點結(jié)點,求最短路徑;與確定起點相反,已知終點結(jié)點,求最短路徑;已知起點和終點,求兩結(jié)點之間的最短路徑;求圖中所有最短路徑.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一部電梯的最大負荷為900千克,有13人共攜帶55千克的物品乘電梯,那么他們的平均體重x(千克)應(yīng)滿足的關(guān)系式是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABN和△ACM位置如圖所示,AB=AC,AD=AE,∠1=∠2.
(1)求證:BD=CE;
(2)求證:∠M=∠N.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某品牌商品,按標價九折出售,仍可獲得20%的利潤,若該商品標價為28元,則商品的進價為( )
A.21元
B.19.8元
C.22.4元
D.25.2元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com