拋物線過點(2,-2)和(-1,10),與x軸交于A、B兩點,與y軸交于C點.
(1)求拋物線的解析式.
(2)求△ABC的面積.

(1);(2)6.

解析試題分析:(1)根據(jù)二次函數(shù)y=x2+bx+c的圖象過點(2,-2)和點(-1,10)兩點,把兩點坐標(biāo)代入二次函數(shù)解析式,即可求出b、c的值,從而確定拋物線的解析式.
(2)令y=0,求出A、B兩點的橫坐標(biāo),進(jìn)而可求△ABC的面積.
試題解析:(1)把點(2,-2)和(-1,10)代入中,得
 解得
∴所求二次函數(shù)解析式為
(2)在中,令x=0,得y=4.
∴C(0,4).
令y=0,得,
解得x=1或x=4.
∴A(1,0) ,B(4,0).
∴AB=3,OC=4

考點: 待定系數(shù)法求二次函數(shù)解析式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

某跳水運動員進(jìn)行10m跳臺跳水的訓(xùn)練時,身體(看成一點)在空中的運動路線是如圖所示坐標(biāo)系下經(jīng)過原點O的一條拋物線(圖中標(biāo)出的數(shù)據(jù)為己知條件).在跳某個規(guī)定動作時,正確情況下,該運動員在空中的最高處距水面m,入水處與池邊的距離為4m, 同時,運動員在距水面高度為5m以前,必須完成規(guī)定的翻騰動作,并調(diào)整好入水姿勢,否則就會出現(xiàn)失誤.

(l)求這條拋物線的解析式;
(2)在某次試跳中,測得運動員在空中的運動路線是(1)中的拋物線,且運動員在空中調(diào)整好入水姿勢時,距池邊的水平距離為,問:此次跳水會不會失誤?通過計算說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線過x軸上兩點A(9,0),C(-3,0),且與y軸交于點B(0,-12).

(1)求拋物線的解析式;
(2)若動點P從點A出發(fā),以每秒2個單位沿射線AC方向運動;同時,點Q從點B出發(fā),以每秒1個單位沿射線BA方向運動,當(dāng)點P到達(dá)點C處時,兩點同時停止運動.問當(dāng)t為何值時,△APQ∽△AOB?
(3)若M為線段AB上一個動點,過點M作MN平行于y軸交拋物線于點N.
①是否存在這樣的點M,使得四邊形OMNB恰為平行四邊形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.
②當(dāng)點M運動到何處時,四邊形CBNA的面積最大?求出此時點M的坐標(biāo)及四邊形CBNA面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)的圖象經(jīng)過點(4,3),(3,0).

(1)求b、c的值;
(2)求出該二次函數(shù)圖象的頂點坐標(biāo)和對稱軸,并在所給坐標(biāo)系中畫出該函數(shù)的圖象;
(3)該函數(shù)的圖像經(jīng)過怎樣的平移得到的圖像?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)圖象頂點為C(1,0),直線與該二次函數(shù)交于A,B兩點,其中A點(3,4),B點在y軸上.

(1)求此二次函數(shù)的解析式;
(2)P為線段AB上一動點(不與A,B重合),過點P作y軸的平行線與二次函數(shù)交于點E.設(shè)線段PE長為h,點P橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式;
(3)D為線段AB與二次函數(shù)對稱軸的交點,在AB上是否存在一點P,使四邊形DCEP為平行四邊形?若存在,請求出P點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C(0,4),D為OC的中點.

(1)求m的值;
(2)拋物線的對稱軸與 x軸交于點E,在直線AD上是否存在點F,使得以點A、B、F為頂點的三角形與△ADE 相似?若存在,請求出點F的坐標(biāo),若不存在,請說明理由;
(3)在拋物線的對稱軸上是否存在點G,使△GBC中BC邊上的高為?若存在,求出點G的坐標(biāo);若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù).
(1)求頂點坐標(biāo)和對稱軸方程;
(2)求該函數(shù)圖象與x標(biāo)軸的交點坐標(biāo);
(3)指出x為何值時,;當(dāng)x為何值時,.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過點A的坐標(biāo)為(m,m),點B的坐標(biāo)為(n,-n),且經(jīng)過原點O,連接OA、OB、AB,線段AB交y軸于點C.已知實數(shù)m,n(m<n)分別是方程x2-2x-3=0的兩根.

(1)求m,n的值.
(2)求拋物線的解析式.
(3)若點P為線段OB上的一個動點(不與點O、B重合),直線PC與拋物線交于D、E兩點(點D在y軸右側(cè)),連接OD,BD.當(dāng)△OPC為等腰三角形時,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點在x軸上,且與y軸交于A點. 直線經(jīng)過A、B兩點,點B的坐標(biāo)為(3,4).
(1)求拋物線的解析式,并判斷點B是否在拋物線上;
(2)如果點B在拋物線上,P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于點E,設(shè)線段PE的長為h,點P的橫坐標(biāo)為x.當(dāng)x為何值時,h取得最大值,求出這時的h值.

查看答案和解析>>

同步練習(xí)冊答案