【題目】等腰梯形ABCD中,ABDC,ADBCCD,點(diǎn)EAB上一點(diǎn),連結(jié)CE,請?zhí)砑右粋你認(rèn)為合適的條件 ,使四邊形AECD為菱形.

【答案】AE=AD或CEB=B(答案不唯一).

【解析】

試題已知了四邊形ADCE的一組鄰邊相等,那么ADCE是菱形的前提條件是四邊形ADCE為平行四邊形,可針對平行四邊形的判定方法及等腰梯形的性質(zhì)來添加所需要的條件.

試題解析:可添加的條件為AE=AD或CEB=B等(答案不唯一);

CEB=B為例進(jìn)行說明;

證明:∵∠CEB=B,

BC=CE=AD;

四邊形ABCD是等腰梯形,

∴∠DAB=CEB=B;

AD平行且相等于CE,即四邊形AECD是平行四邊形;

AD=DC,

平行四邊形ADCE是菱形.

考點(diǎn): 1.菱形的判定;2.等腰梯形的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某地質(zhì)公園中有兩座相鄰小山.游客需從左側(cè)小山山腳E處乘坐豎直觀光電梯上行100米到達(dá)山頂C處,然后既可以沿水平觀光橋步行到景點(diǎn)P處,也可以通過滑行索道到達(dá)景點(diǎn)Q處,在山頂C處觀測坡底A的俯角為75°,觀測Q處的俯角為30°,已知右側(cè)小山的坡角為30°(圖中的點(diǎn)C,E,A,B,P,Q均在同一平面內(nèi),點(diǎn)A,Q,P在同一直線上)

(1)求∠CAP的度數(shù)及CP的長度;

(2)P,Q兩點(diǎn)之間的距離.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在面積都相等的所有三角形中,當(dāng)其中一個三角形的一邊長時,這條邊上的高

1)①求關(guān)于的函數(shù)表達(dá)式;

②當(dāng)時,求的取值范圍;

2)小李說其中有一個三角形的一邊與這邊上的高之和為小趙說有一個三角形的一邊與這邊上的高之和為.你認(rèn)為小李和小趙的說法對嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校準(zhǔn)備購進(jìn)一批節(jié)能燈,已知1A型節(jié)能燈和3B型節(jié)能燈共需26元;3A型節(jié)能燈和2B型節(jié)能燈共需29元.

(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價各是多少元;

(2)學(xué)校準(zhǔn)備購進(jìn)這兩種型號的節(jié)能燈共50只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的3倍,請設(shè)計出最省錢的購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD中,AB=6,AD=10,動點(diǎn)P從點(diǎn)D出發(fā),在邊DA上以每秒1個單位的速度向點(diǎn)A運(yùn)動,連接CP,作點(diǎn)D關(guān)于直線PC的對稱點(diǎn)E,設(shè)點(diǎn)P的運(yùn)動時間為t(x),當(dāng)P,EB三點(diǎn)在同一直線上時對應(yīng)t的值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形的頂點(diǎn)分別在軸的正半軸上,點(diǎn)在反比例函數(shù)的第一象限內(nèi)的圖像上,,動點(diǎn)軸的上方,且滿足.

(1)若點(diǎn)在這個反比例函數(shù)的圖像上,求點(diǎn)的坐標(biāo);

(2)連接,求的最小值;

(3)若點(diǎn)是平面內(nèi)一點(diǎn),使得以為頂點(diǎn)的四邊形是菱形,則請你直接寫出滿足條件的所有點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,內(nèi)部有6個全等的正方形,小正方形的頂點(diǎn)E、F、G、H分別在邊AD、AB、BC、CD上,則tan∠DEH=( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,AB=AC,A=36°,ABC的平分線交ACD,

(1)求證:ABC∽△BCD;

(2)BC=2,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長均為1的正方形網(wǎng)格中,AB是半圓形的直徑.

(1)僅用無刻度的直尺,將圖的半圓形分成三個全等的扇形;

(2)在圖中,用直尺和圓規(guī),以點(diǎn)O為圓心作一個與半圓形不全等的扇形,使得扇形的面積等于半圓形的面積,并寫出作法.

查看答案和解析>>

同步練習(xí)冊答案