如圖,M是△ABC的邊BC的中點(diǎn),AN平分∠BAC,BN⊥AN于點(diǎn)N,延長BN交AC于點(diǎn)D,已知AB=10,BC=15,MN=3
(1)求證:BN=DN;
(2)求△ABC的周長.
【答案】分析:(1)證明△ABN≌△ADN,即可得出結(jié)論;
(2)先判斷MN是△BDC的中位線,從而得出CD,由(1)可得AD=AB=10,從而計(jì)算周長即可.
解答:(1)證明:在△ABN和△ADN中,
,
∴△ABN≌△ADN,
∴BN=DN.

(2)解:∵△ABN≌△ADN,
∴AD=AB=10,DN=NB,
又∵點(diǎn)M是BC中點(diǎn),
∴MN是△BDC的中位線,
∴CD=2MN=6,
故△ABC的周長=AB+BC+CD+AD=10+15+6+10=41.
點(diǎn)評:本題考查了三角形的中位線定理及等腰三角形的判定,注意培養(yǎng)自己的敏感性,一般出現(xiàn)高、角平分線重合的情況,都需要找到等腰三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC的中線,∠ADC=60°,點(diǎn)C′與點(diǎn)C關(guān)于直線AD對稱,若BC=6cm,則點(diǎn)B與點(diǎn)C′之間的距離為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O是△ABC的外接圓,已知∠B=62°,則∠CAO的度數(shù)是( 。
A、28°B、30°C、31°D、62°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,AD是△ABC的角平分線,∠B=60°,E,F(xiàn)分別在AC、AB上,且AE=AF,∠CDE=∠BAC,那么,圖中長度一定與DE相等的線段共有
3
條.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O是△ABC的外接圓,AB是直徑,若∠B=50°,則∠A等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AD是△ABC的外接圓直徑,AD=
2
,∠B=∠DAC,則AC的值為
1
1

查看答案和解析>>

同步練習(xí)冊答案