【題目】如圖,在等邊△ABC中,點(diǎn)D為邊BC的中點(diǎn),以AD為邊作等邊△ADE,連接BE.求證:BE=BD
【答案】證明見解析.
【解析】根據(jù)等邊三角形的性質(zhì)就可以得出∠BAC=∠DAE=60°,AB=AC,AD=DE=AE,進(jìn)而就可以得出△ABD≌△ACE.
證明:∵在等邊△ABC中,點(diǎn)D為邊BC的中點(diǎn),
∴∠CAD =∠DAB=∠CAB= 30°,
∵△ADE為等邊三角形,
∴AD=AE,∠DAE= 60°,
∵∠DAB= 30°,
∴∠DAB =∠EAB= 30°,
在△ADB與△AEB中,
∴△ADB≌△AEB,
∴ BE=BD.
“點(diǎn)睛”本題考查了等邊三角形的性質(zhì)的運(yùn)用,等式的性質(zhì)的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,解答時(shí)證明三角形全等是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)自主研發(fā)的某型號(hào)手機(jī)處理器采用10 nm工藝,已知1 nm=0.000000001 m,則10 nm用科學(xué)記數(shù)法可表示為_____m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)直角三角形斜邊上的中線長(zhǎng)為6 cm,那么這個(gè)直角三角形的斜邊長(zhǎng)為______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以O(shè)(0,0)、A(1,-1)、B(2,0)為頂點(diǎn),構(gòu)造平行四邊形,下列各點(diǎn)中不能作為平行四邊形第四個(gè)頂點(diǎn)坐標(biāo)的是
( )
A.(3,-1)
B.(-1,-1)
C.(1,1)
D.(-2,-1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣2x﹣a=0有兩個(gè)相等的實(shí)數(shù)根,則a的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E是DC的中點(diǎn),連接AE,并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)F.
(1)求證:△ADE和△CEF的面積相等
(2)若AB=2AD,試說明AF恰好是∠BAD的平分線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)說出以下幾個(gè)點(diǎn)在坐標(biāo)軸的哪部分上.(2, 0)、(0, 4)、(1, 0)、(0,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】多項(xiàng)式15a3b2(a+b)c+10a2b(a+b)的公因式是( )
A.5a3b2(a+b)
B.a2b(a+b)
C.5ab(a+b)
D.5a2b(a+b)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com