精英家教網(wǎng)如圖,AB是⊙O的直徑,BC是⊙O的弦,半徑OD⊥BC,垂足為E,若BC=6
3
,DE=3.
求:(1)⊙O的半徑;(2)弦AC的長;(3)陰影部分的面積.
分析:(1)半徑OD⊥BC,所以由垂徑定理知:CE=BE,在直角△OCE中,根據(jù)勾股定理就可以求出OC的值;
(2)根據(jù)AB是⊙O的直徑,得到∠ACB=90°,因而在直角三角形ABC中根據(jù)勾股定理得到AC的長;
(3)陰影部分的面積就是扇形OCA的面積減去△OAC的面積.
解答:解:(1)∵半徑OD⊥BC,
∴CE=BE,
∵BC=6
3
,
∴CE=3
3

設(shè)OC=x,在直角三角形OCE中,OC2=CE2+OE2,
∴x2=(3
3
2+(x-3)2,
∴x=6
即半徑OC=6;(4分)

(2)∵AB為直徑,
∴∠ACB=90°,AB=12,
又∵BC=6
3

∴AC2=AB2-BC2=36,
∴AC=6;(7分)

(3)∵OA=OC=AC=6,
∴∠AOC=60°,
∴S=S-S△OAC=
60×π×62
360
-
1
2
×6×6×
3
2

=6π-9
3
.(10分)
點評:陰影部分的面積可以看作是扇形的面積減去三角形的面積,求不規(guī)則的圖形的面積,可以轉(zhuǎn)化為幾個規(guī)則圖形的面積的和或差來求.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側(cè)面的一部分(如圖1),它的側(cè)面邊緣上有兩條圓。ㄈ鐖D2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長線上,其圓心角為90°,請你根據(jù)所標(biāo)示的尺寸(單位:cm)解決下面的問題.(玻璃鋼材料的厚度忽略不計,π取3.1416)
(1)計算出弧AB所對的圓心角的度數(shù)(精確到0.01度)及弧AB的長度;(精確到0.1cm)
(2)計算出遮雨罩一個側(cè)面的面積;(精確到1cm2
(3)制做這個遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網(wǎng)0.1平方米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點離水面8m,以水平線AB為x軸,AB的中點為原點建立坐標(biāo)系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內(nèi)壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習(xí)冊答案