4
分析:連接BE、CE,易知△BCE是等腰三角形,那么它的外接圓圓心必在BC的垂直平分線上;設(shè)此中垂線與BC的交點為F,△BCE的外接圓圓心為O,連接OB、OC,易證得∠OEC=∠OCE=∠DCE=∠DEC=15°,因此四邊形OCDE是平行四邊形;而OC=OE、CD=DE,那么四邊形OCDE是菱形,因此△BCE的外接圓半徑即為AD的長,由此得到它的外接圓直徑.
解答:
解:連接EF,過E作EF⊥BC于E;
易知DE=DC=2
,∠EDC=90°+60°=150°
∴∠1=∠2=15°;
同理,∠3=∠4=15°;
易證得△ABE≌△DCE,得BE=CE;
則∠5=∠6=
∠BEC=15°;
設(shè)△BCE的外心為O,則O必在線段EF上;
連接OC,則∠5=∠7=15°,
∴∠7=∠2=15°,得OC∥DE;
又∵OE∥CD,且OC=OE,
∴四邊形OCDE是菱形,即OC=OE=CD=2
,
故過B、C、E三點的圓的直徑為4
.
點評:此題主要考查了正方形、等邊三角形的性質(zhì),菱形的判定和性質(zhì)、等腰三角形的性質(zhì)以及三角形的外接圓等相關(guān)知識;能夠判斷出所求圓的直徑同AD的值相同是解決此題的關(guān)鍵.