【題目】如圖,BD是菱形ABCD的對角線,E是邊AD的中點,F是邊AB上的一點,將△AEF沿EF所在的直線翻折得到△A′EF,連結A′C.若AB=5,BD=6,當點A′到∠A的兩邊的距離相等時,A′C的長是_____.
【答案】4
【解析】
由菱形的性質可得AB=BC=CD=AD=5,BD⊥AC,DO=BO=BD=3,AO=CO,AC平分∠DAB,由勾股定理可求AO,AC的長,由角平分線的性質可得點A'在線段AC上,由平行線分線段成比例可求AH的長,即可求A'C的長.
如圖,連接AC,
∵四邊形ABCD是菱形,
∴AB=BC=CD=AD=5,BD⊥AC,DO=BO=BD=3,AO=CO,AC平分∠DAB,
∴AO==4,
∴AC=2AO=8,
∵點A′到∠DAB的兩邊的距離相等,
∴點A'在∠DAB的平分線上,即點A'在線段AC上,
∵將△AEF沿EF所在的直線翻折得到△A′EF,
∴AH=A'H,EF⊥AC,
∴EF∥DB,
∴,
∴AO=2AH,
∴AH=2,
∴A'C=AC﹣AA'=8﹣4=4,
故答案為:4
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,∠ACB是圓周角,CD平分∠ACB,交⊙O于點D,過點D作DE∥AB交CA的延長線于點E,連接AD,BD.
(1)求證:DE是⊙O的切線;
(2)若AB=12,AC=6,求由AB,BD,弧AD圍成的陰影部分的面積;
(3)在(2)的條件下,求線段DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點D,E分別在邊AB,AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.
(1)觀察猜想
圖1中,線段PM與PN的數量關系是 ,位置關系是 ;
(2)探究證明
把△ADE繞點A逆時針方向旋轉到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;
(3)拓展延伸
把△ADE繞點A在平面內自由旋轉,若AD=4,AB=10,請直接寫出△PMN面積的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】紅燈籠,象征著闔家團圓,紅紅火火,掛燈籠成為我國的一種傳統(tǒng)文化.小明在春節(jié)前購進甲、乙兩種紅燈籠,用3120元購進甲燈籠與用4200元購進乙燈籠的數量相同,已知乙燈籠每對進價比甲燈籠每對進價多9元.
(1)求甲、乙兩種燈籠每對的進價;
(2)經市場調查發(fā)現,乙燈籠每對售價50元時,每天可售出98對,售價每提高1元,則每天少售出2對:物價部門規(guī)定其銷售單價不高于每對65元,設乙燈籠每對漲價x元,小明一天通過乙燈籠獲得利潤y元.
①求出y與x之間的函數解析式;
②乙種燈籠的銷售單價為多少元時,一天獲得利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某種進價為每件40元的商品,通過調查發(fā)現,當銷售單價在40元至65元之間()時,每月的銷售量(件)與銷售單價(元)之間滿足如圖所示的一次函數關系.
(1)求與的函數關系式;
(2)設每月獲得的利潤為(元),求與之間的函數關系式;
(3)若想每月獲得1600元的利潤,那么銷售單價應定為多少元?
(4)當銷售單價定為多少元時,每月的銷售利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是AB延長線上的點,CD與⊙O相切于點D,連結BD、AD
(1)求證:∠BDC=∠A;
(2)若∠C=45°,⊙O的半徑為1,求圖中陰影部分的面積(結果保留根號和π)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A在雙曲線y= 上,點B在雙曲線y=(k≠0)上,AB∥x軸,交y軸于點C,若AB=2AC,則k的值為( 。
A.6B.8C.10D.12
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與x軸相交于點A(1,0)和點B,與y軸交于點C(0,﹣3)頂點為D
(1)求拋物線的函數關系式;
(2)判斷△BCD的形狀,并說明理由;
(3)點P在拋物線上,點Q在直線y=x上,是否存在點P、Q使以點P、Q、C、O為頂點的四邊形是平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點E,點P是AB延長線上一點,連接PC交DB的延長線于點F,且∠PFB=3∠CAB.
(1)求證:PC是⊙O的切線;
(2)延長AC,DF相交于點G,連接PG,請?zhí)骄俊?/span>CPG和∠CAB的數量關系,并說明理由;
(3)若tan∠CAB=,CF=5,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com