我市某商場(chǎng)有甲、乙兩種商品,甲種每件進(jìn)價(jià)15元,售價(jià)20元;乙種每件進(jìn)價(jià)35元,售價(jià)45元.
(1)若商家同時(shí)購(gòu)進(jìn)甲、乙兩種商品100件,設(shè)甲商品購(gòu)進(jìn)x件,售完此兩種商品總利潤(rùn)為y 元.寫出y與x的函數(shù)關(guān)系式.
(2)該商家計(jì)劃最多投入3000元用于購(gòu)進(jìn)此兩種商品共100件,則至少要購(gòu)進(jìn)多少件甲種商品?若售完這些商品,商家可獲得的最大利潤(rùn)是多少元?
(3)“五•一”期間,商家對(duì)甲、乙兩種商品進(jìn)行表中的優(yōu)惠活動(dòng),小王到該商場(chǎng)一次性付款324元購(gòu)買此類商品,商家可獲得的最小利潤(rùn)和最大利潤(rùn)各是多少?
打折前一次性購(gòu)物總金額 優(yōu)惠措施
不超過(guò)400元 售價(jià)打九折
超過(guò)400元 售價(jià)打八折
(1)設(shè)甲商品購(gòu)進(jìn)x件,則乙商品購(gòu)進(jìn)(100-x)件,由題意,得
y=(20-15)x+(45-35)(100-x)=-5x+1000,
故y與x之間的函數(shù)關(guān)系式為:y=-5x+1000;

(2)由題意,得15x+35(100-x)≤3000,
解之,得x≥25.
∵y=-5x+1000,k=-5<0,
∴y隨x的增大而減小,
∴當(dāng)x取最小值25時(shí),y最大值,此時(shí)y=-5×25+1000=875(元),
∴至少要購(gòu)進(jìn)25件甲種商品;若售完這些商品,商家可獲得的最大利潤(rùn)是875元;

(3)設(shè)小王到該商場(chǎng)購(gòu)買甲種商品m件,購(gòu)買乙種商品n件.
①當(dāng)打折前一次性購(gòu)物總金額不超過(guò)400時(shí),購(gòu)物總金額為324÷0.9=360(元),
則20m+45n=360,m=18-
9
4
n>0,∴0<n<8.
∵n是4的倍數(shù),
∴n=4,m=9.
此時(shí)的利潤(rùn)為:324-(15×9+35×4)=49(元);
②當(dāng)打折前一次性購(gòu)物總金額超過(guò)400時(shí),購(gòu)物總金額為324÷0.8=405(元),
則20m+45n=405,m=
81-9n
4
>0,∴0<n<9.
∵m、n均是正整數(shù),
∴m=9,n=5或m=18,n=1.
當(dāng)m=9,n=5的利潤(rùn)為:324-(9×15+5×35)=14(元);
當(dāng)m=18,n=1的利潤(rùn)為:324-(18×15+1×35)=19(元).
綜上所述,商家可獲得的最小利潤(rùn)是14元,最大利潤(rùn)各是49元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•梧州)我市某商場(chǎng)有甲、乙兩種商品,甲種每件進(jìn)價(jià)15元,售價(jià)20元;乙種每件進(jìn)價(jià)35元,售價(jià)45元.
(1)若商家同時(shí)購(gòu)進(jìn)甲、乙兩種商品100件,設(shè)甲商品購(gòu)進(jìn)x件,售完此兩種商品總利潤(rùn)為y 元.寫出y與x的函數(shù)關(guān)系式.
(2)該商家計(jì)劃最多投入3000元用于購(gòu)進(jìn)此兩種商品共100件,則至少要購(gòu)進(jìn)多少件甲種商品?若售完這些商品,商家可獲得的最大利潤(rùn)是多少元?
(3)“五•一”期間,商家對(duì)甲、乙兩種商品進(jìn)行表中的優(yōu)惠活動(dòng),小王到該商場(chǎng)一次性付款324元購(gòu)買此類商品,商家可獲得的最小利潤(rùn)和最大利潤(rùn)各是多少?
打折前一次性購(gòu)物總金額 優(yōu)惠措施
不超過(guò)400元 售價(jià)打九折
超過(guò)400元 售價(jià)打八折

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我市某商場(chǎng)有甲、乙兩種商品,甲種每件進(jìn)價(jià)15元,售價(jià)20元;乙種每件進(jìn)價(jià)35元,售價(jià)45元.

(1)若商家同時(shí)購(gòu)進(jìn)甲、乙兩種商品100件,設(shè)甲商品購(gòu)進(jìn)x件,售完此兩種商品總利潤(rùn)為y 元.寫出y與x的函數(shù)關(guān)系式.

(2)該商家計(jì)劃最多投入3000元用于購(gòu)進(jìn)此兩種商品共100件,則至少要購(gòu)進(jìn)多少件甲種商品?若售完這些商品,商家可獲得的最大利潤(rùn)是多少元?

(3)“五•一”期間,商家對(duì)甲、乙兩種商品進(jìn)行表中的優(yōu)惠活動(dòng),小王到該商場(chǎng)一次性付款324元購(gòu)買此類商品,商家可獲得的最小利潤(rùn)和最大利潤(rùn)各是多少?

打折前一次性購(gòu)物總金額

優(yōu)惠措施

不超過(guò)400元

售價(jià)打九折

超過(guò)400元

售價(jià)打八折

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年廣西梧州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

我市某商場(chǎng)有甲、乙兩種商品,甲種每件進(jìn)價(jià)15元,售價(jià)20元;乙種每件進(jìn)價(jià)35元,售價(jià)45元.
(1)若商家同時(shí)購(gòu)進(jìn)甲、乙兩種商品100件,設(shè)甲商品購(gòu)進(jìn)x件,售完此兩種商品總利潤(rùn)為y 元.寫出y與x的函數(shù)關(guān)系式.
(2)該商家計(jì)劃最多投入3000元用于購(gòu)進(jìn)此兩種商品共100件,則至少要購(gòu)進(jìn)多少件甲種商品?若售完這些商品,商家可獲得的最大利潤(rùn)是多少元?
(3)“五•一”期間,商家對(duì)甲、乙兩種商品進(jìn)行表中的優(yōu)惠活動(dòng),小王到該商場(chǎng)一次性付款324元購(gòu)買此類商品,商家可獲得的最小利潤(rùn)和最大利潤(rùn)各是多少?
打折前一次性購(gòu)物總金額優(yōu)惠措施
不超過(guò)400元售價(jià)打九折
超過(guò)400元售價(jià)打八折

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(廣西梧州卷)數(shù)學(xué)(解析版) 題型:解答題

我市某商場(chǎng)有甲、乙兩種商品,甲種每件進(jìn)價(jià)15元,售價(jià)20元;乙種每件進(jìn)價(jià)35元,售價(jià)45元.

(1)若商家同時(shí)購(gòu)進(jìn)甲、乙兩種商品100件,設(shè)甲商品購(gòu)進(jìn)x件,售完此兩種商品總利潤(rùn)為y 元.寫出y與x的函數(shù)關(guān)系式.

(2)該商家計(jì)劃最多投入3000元用于購(gòu)進(jìn)此兩種商品共100件,則至少要購(gòu)進(jìn)多少件甲種商品?若售完這些商品,商家可獲得的最大利潤(rùn)是多少元?

(3)“五•一”期間,商家對(duì)甲、乙兩種商品進(jìn)行表中的優(yōu)惠活動(dòng),小王到該商場(chǎng)一次性付款324元購(gòu)買此類商品,商家可獲得的最小利潤(rùn)和最大利潤(rùn)各是多少?

打折前一次性購(gòu)物總金額

優(yōu)惠措施

不超過(guò)400元

售價(jià)打九折

超過(guò)400元

售價(jià)打八折

 

查看答案和解析>>

同步練習(xí)冊(cè)答案