【題目】已知:拋物線l1:y=﹣x2+bx+3交x軸于點(diǎn)A,B,(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C,其對(duì)稱軸為x=1,拋物線l2經(jīng)過點(diǎn)A,與x軸的另一個(gè)交點(diǎn)為E(5,0),交y軸于點(diǎn)D(0,﹣ ).

(1)求拋物線l2的函數(shù)表達(dá)式;
(2)P為直線x=1上一動(dòng)點(diǎn),連接PA,PC,當(dāng)PA=PC時(shí),求點(diǎn)P的坐標(biāo);
(3)M為拋物線l2上一動(dòng)點(diǎn),過點(diǎn)M作直線MN∥y軸,交拋物線l1于點(diǎn)N,求點(diǎn)M自點(diǎn)A運(yùn)動(dòng)至點(diǎn)E的過程中,線段MN長(zhǎng)度的最大值.

【答案】
(1)解:∵拋物線l1:y=﹣x2+bx+3的對(duì)稱軸為x=1,

∴﹣ =1,解得b=2,

∴拋物線l1的解析式為y=﹣x2+2x+3,

令y=0,可得﹣x2+2x+3=0,解得x=﹣1或x=3,

∴A點(diǎn)坐標(biāo)為(﹣1,0),

∵拋物線l2經(jīng)過點(diǎn)A、E兩點(diǎn),

∴可設(shè)拋物線l2解析式為y=a(x+1)(x﹣5),

又∵拋物線l2交y軸于點(diǎn)D(0,﹣ ),

∴﹣ =﹣5a,解得a=

∴y= (x+1)(x﹣5)= x2﹣2x﹣ ,

∴拋物線l2的函數(shù)表達(dá)式為y= x2﹣2x﹣


(2)解:設(shè)P點(diǎn)坐標(biāo)為(1,y),由(1)可得C點(diǎn)坐標(biāo)為(0,3),

∴PC2=12+(y﹣3)2=y2﹣6y+10,PA2=[1﹣(﹣1)]2+y2=y2+4,

∵PC=PA,

∴y2﹣6y+10=y2+4,解得y=1,

∴P點(diǎn)坐標(biāo)為(1,1)


(3)解:由題意可設(shè)M(x, x2﹣2x﹣ ),

∵M(jìn)N∥y軸,

∴N(x,﹣x2+2x+3), x2﹣2x﹣

令﹣x2+2x+3= x2﹣2x﹣ ,可解得x=﹣1或x= ,

①當(dāng)﹣1<x≤ 時(shí),MN=(﹣x2+2x+3)﹣( x2﹣2x﹣ )=﹣ x2+4x+ =﹣ (x﹣ 2+ ,

顯然﹣1< ,∴當(dāng)x= 時(shí),MN有最大值

②當(dāng) <x≤5時(shí),MN=( x2﹣2x﹣ )﹣(﹣x2+2x+3)= x2﹣4x﹣ = (x﹣ 2 ,

顯然當(dāng)x> 時(shí),MN隨x的增大而增大,

∴當(dāng)x=5時(shí),MN有最大值, ×(5﹣ 2 =12;

綜上可知在點(diǎn)M自點(diǎn)A運(yùn)動(dòng)至點(diǎn)E的過程中,線段MN長(zhǎng)度的最大值為12


【解析】(1)由拋物線l1的對(duì)稱軸為x=1,得到b=2,得到拋物線l1的解析式,得到A點(diǎn)坐標(biāo)為(﹣1,0),由待定系數(shù)法求出拋物線l2 的函數(shù)表達(dá)式;(2)設(shè)出P點(diǎn)坐標(biāo),由(1)可得C點(diǎn)坐標(biāo),由PC=PA,得到P點(diǎn)坐標(biāo)為(1,1);(3)由題意可設(shè)出M點(diǎn)的坐標(biāo),由MN∥y軸,得到N點(diǎn)坐標(biāo),得出MN有最大值 ;②當(dāng) <x≤5時(shí) ,顯然當(dāng)x> 時(shí),MN隨x的增大而增大,所以當(dāng)x=5時(shí),MN有最大值;綜上可知在點(diǎn)M自點(diǎn)A運(yùn)動(dòng)至點(diǎn)E的過程中,線段MN長(zhǎng)度的最大值為12;此題是綜合題,難度較大,計(jì)算和解方程時(shí)需認(rèn)真仔細(xì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,是一個(gè)長(zhǎng)為 2m,寬為 2n 的長(zhǎng)方形,沿圖中虛線用剪刀將其均分成四個(gè)完全相同的小長(zhǎng)方形,然后按圖 2 的形狀拼圖.

(1) 2 中的圖形陰影部分的邊長(zhǎng)為 ;(用含 m、n 的代數(shù)式表示)

(2)請(qǐng)你用兩種不同的方法分別求圖 2 中陰影部分的面積方法一: ;方法二:

(3)觀察圖 2,請(qǐng)寫出代數(shù)式(m+n)2、(m﹣n)2、4mn 之間的關(guān)系式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:圖1、圖2是兩張形狀、大小完全相同的網(wǎng)格,網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)均為.格中各有一個(gè)完全相同的三角形,請(qǐng)?jiān)趫D1、圖2分別面一條直線,滿足以下要求

1)直線與三角形的交點(diǎn)要經(jīng)過網(wǎng)格的格點(diǎn)(每個(gè)小正方形的頂點(diǎn)均為格點(diǎn))

2)在圖1、圖2中分別用不同的方法將三角形分成兩個(gè)圖形其中一個(gè)是三角形另一個(gè)是四邊形,分割后的三角形的面積記為,四邊形的面積為,且

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.

(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長(zhǎng);
(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知BE平分ABD,DE平分BDC,且BED =∠ABE +∠EDC

1)如圖1,求證:AB//CD;

2)如圖2,若ABE=3∠ABF,且BFD=30°時(shí),試求的值;

3)如圖3,若H是直線CD上一動(dòng)點(diǎn)(不與D重合),BI平分HBD,畫出圖形,并探究出EBIBHD的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由一些完全相同的小正方體搭成的幾何體的主視圖和左視圖,組成這個(gè)幾何體的小正方體的個(gè)數(shù)最少是( )

A.5個(gè)
B.6個(gè)
C.7個(gè)
D.8個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三名快遞員某天的工作情況如圖所示,其中點(diǎn)的橫、縱坐標(biāo)分別表示甲、乙、丙三名快遞員上午派送快遞所用的時(shí)間和件數(shù);點(diǎn),,的橫、縱坐標(biāo)分別表示甲、乙、丙三名快遞員下午派送快遞所用的時(shí)間和件數(shù).有如下三個(gè)結(jié)論:①上午派送快遞所用時(shí)間最短的是甲;②下午派送快遞件數(shù)最多的是丙;③在這一天中派送快遞總件數(shù)最多的是乙.上述結(jié)論中,所有正確結(jié)論的序號(hào)是(

A. ①②B. ①③C. D. ②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=1,點(diǎn)P是BC邊上的任意一點(diǎn)(異于端點(diǎn)B、C),連接AP,過B、D兩點(diǎn)作BE⊥AP于點(diǎn)E,DF⊥AP于點(diǎn)F.

(1)求證:EF=DF﹣BE;

(2)若△ADF的周長(zhǎng)為,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】榮榮是個(gè)愛動(dòng)腦筋的同學(xué),在發(fā)現(xiàn)教材中的用方框在月歷中移動(dòng)的規(guī)律后,突發(fā)奇想,將連續(xù)的偶數(shù)2、46、8,排成如下表,并用一個(gè)十字形框架住其中的五個(gè)數(shù),請(qǐng)你仔細(xì)觀察十字形框架中數(shù)字的規(guī)律,并回答下列問題:

十字框中的五個(gè)數(shù)的和與中間的數(shù)16有什么關(guān)系?

設(shè)中間的數(shù)為x,用代數(shù)式表示十字框中的五個(gè)數(shù)的和;

(3)若將十字框上下左右移動(dòng),可框住另外的五個(gè)數(shù),其中五個(gè)數(shù)的和能等于2018嗎?如能,寫出這五個(gè)數(shù),如不能,說明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案