如上右圖,在矩形ABCD中,對角線AC、BD相交于點G,E為AD的中點,連接BE交AC于點F,連接FD,若∠BFA=90°,則下列四對三角形:①△BEA與△ACD;②△FED與△DEB;③△CFD與△ABC;④△ADF與△CFB.其中相似的為

A.①④         B.①②             C.②③④           D.①②③
D

試題分析:解:根據(jù)題意得:∠BAE=∠ADC=∠AFE=90
∴∠AEF+∠EAF=90°,∠DAC+∠ACD=90°
∴∠AEF=∠ACD
∴①中兩三角形相似;
容易判斷△AFE∽△BAE,得
又∵AE=ED,∴
而∠BED=∠BED,∴△FED∽△DEB.故②正確;
∵AB∥CD,
∴∠BAC=∠GCD,
∵∠ABE=∠DAF,∠EBD=∠EDF,且∠ABG=∠ABE+∠EBD,
∴∠ABG=∠DAF+∠EDF=∠DFC;
∵∠ABG=∠DFC,∠BAG=∠DCF,
∴△CFD∽△ABG,故③正確;
所以相似的有①②③.
點評:本題難度較低,主要考查學生對相似三角形判定性質(zhì)的掌握。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如下4個圖中,不同的矩形ABCD,若把D點沿AE對折,使D點與BC上的F點重合;

(1)圖①中,若DE︰EC=2︰1,求證:△ABF∽△AFE∽△FCE;并計算BF︰FC;
(2)圖②中若DE︰EC=3︰1,計算BF︰FC=     ;圖③中若DE︰EC=4︰1,計算BF︰FC=     ;
(3)圖④中若DE︰EC=︰1,猜想BF︰FC=       ;并證明你的結(jié)論

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列命題是真命題的是(   )
A.相等的角是對頂角
B.三角形的一個外角大于任何一個內(nèi)角
C.一組鄰邊對應(yīng)成比例的兩個矩形相似
D.若AB被點C黃金分割,則AC=AB

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)如圖①,P為△ABC的邊AB上一點(P不與點A、點B重合),連接PC,如果△CBP∽△ABC,那么就稱P為△ABC的邊AB上的相似點.
畫法初探
①如圖②,在△ABC中,∠ACB>90°,畫出△ABC的邊AB上的相似點P(畫圖工具不限,保留畫圖痕跡或有必要的說明);

辯證思考
②是不是所有的三角形都存在它的邊上的相似點?如果是,請說明理由;如果不是,請找出一個不存在邊上相似點的三角形;
特例分析
③已知P為△ABC的邊AB上的相似點,連接PC,若△ACP∽△ABC,則△ABC的形狀是   ;
④如圖③,在△ABC中,AB=AC,∠A=36°,P是邊AB上的相似點,求的值.
(2)在矩形ABCD中,AB=a,BC=b(a≥b).P是AB上的點(P不與點A、點B重合),作PQ⊥CD,垂足為Q.如果矩形ADQP∽矩形ABCD,那么就稱PQ為矩形ABCD的邊AB、CD上的相似線.

①類比(1)中的“畫法初探”,可以提出問題:對于如圖④的矩形ABCD,在不限制畫圖工具的前提下,如何畫出它的邊AB、CD上的相似線PQ呢?
你的解答是:   (只需描述PQ的畫法,不需在圖上畫出PQ).
②請繼續(xù)類比(1)中的“辯證思考”、“特例分析”兩個欄目對矩形的相似線進行研究,要求每個欄目提出一個問題并解決.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在□ABCD中,AD = 6,點E在邊AD上,且DE = 3,連接BE與對角線AC相交于點M,則的值為(    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

為了測量路燈(OS)的高度,把一根長1.5米的竹竿(AB)豎直立在水平地面上,測得竹竿的影子(BC)長為1米,然后拿竹竿向遠離路燈方向走了3.2米(BB),再把竹竿豎立在地面上,測得竹竿的影長(BC)為1.8米,求路燈離地面的高度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在矩形ABCD中,對角線AC、BD相交于點G,E為AD的中點,連接BE交AC于點F,連接FD,若∠BFA=90°,則下列四對三角形:①△BEA與△ACD;②△FED與△DEB;③△CFD與△ABC;④△ADF與△CFB.其中相似的為

A.①④         B.①②             C.②③④           D.①②③

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)已知正方形ABCD ,點E、F、G、H分別在邊AB、BC、CD、DA上,若EGFH,求證EG = FH”(如圖1);

(2)如果把條件中的“正方形”改為“長方形”,并設(shè)AB =2,BC =3(如圖2),試探究EG、FH之間有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論;

(3)如果把條件中的“EGFH”改為“EGFH的夾角為45°”,并假設(shè)正方形ABCD的邊長為1,FH的長為(如圖3),試求EG的長度。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

△ADE∽△ABC, AM、AN分別是△ADE和△ABC的高,且周長分別是5和15,則AM:AN=      

查看答案和解析>>

同步練習冊答案