如圖, 已知拋物線與x軸相交于A、B,點B的坐標為(10,0),頂點M的坐標為(4,8),點P從點M出發(fā),以每秒1個單位的速度沿線段MA向A點運動;點Q從點A出發(fā),以每秒2個單位的速度沿AB向B點運動,若P、Q同時出發(fā),當其中的一點到達終點時,另一點也隨之停止運動,設運動時間為t秒鐘。

(1)求拋物線的解析式;

(2)設△APQ的面積為S,求S與t之間的函數(shù)關系式,△APQ的面積是否有最大值?若有,請求出其最大值;若沒有,請說明理由;

(3)當t為何值時,△APQ為等腰三角形?

 

【答案】

 

(1)

(2)20

(3)當AP=AQ時,t=;

當AP=PQ時,;

當AQ=PQ時,

【解析】(1)設拋物線的解析式為,把B(10,0)代入得

36a+8=0      解得a=   ∴拋物線的解析式為

(2)由拋物線的對稱性可知點A的坐標為(-2,0),過M作MC⊥x軸于點C,

過P作⊥x軸于點H,則AC=6,MC=8,AM=10

由△PAH∽△MAC得,解得

(0≤t≤6)

<0  ∴s有最大值,當t=5時,s有最大值為20

(3)當AP=AQ時,t=;

     當AP=PQ時,

     當AQ=PQ時,

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于點A(-2,0),B(4,0),與y軸交于點C(0,8).
(1)求拋物線的解析式及其頂點D的坐標;
(2)設直線CD交x軸于點E.在線段OB的垂直平分線上是否存在點P,使得點P到直線CD的距離等于點P到原點O的距離?如果存在,求出點P的坐標;如果不存在,請說明理由;
(3)點M是直線CD上的一動點,BM交拋物線于N,是否存在點N是線段BM的中點,如果存在,求出點N的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于點A(-1,0),與y軸交于點C(0,3),且對稱軸方程為x=1
(1)求拋物線與x軸的另一個交點B的坐標;
(2)求拋物線的解析式;
(3)設拋物線的頂點為D,在其對稱軸的右側的拋物線上是否存在點P,使得△PDC是等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由;
(4)若點M是拋物線上一點,以B、C、D、M為頂點的四邊形是直角梯形,試求出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線與x軸交于點A(-1,0),E(3,0),與y軸交于點B,且該精英家教網(wǎng)函數(shù)的最大值是4.
(1)拋物線的頂點坐標是(
 
,
 
);
(2)求該拋物線的解析式和B點的坐標;
(3)設拋物線頂點是D,求四邊形AEDB的面積;
(4)若拋物線y=mx2+nx+p與上圖中的拋物線關于x軸對稱,請直接寫出m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•株洲)如圖,已知拋物線與x軸的一個交點A(1,0),對稱軸是x=-1,則該拋物線與x軸的另一交點坐標是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線與x軸交于點A(-2,0),B(4,0),與y軸交于點C(0,8).
(1)求拋物線的解析式及其頂點D的坐標;
(2)設直線CD交x軸于點E,過點B作x軸的垂線,交直線CD于點F,在坐標平面內找一點G,使以點G、F、C為頂點的三角形與△COE相似,請直接寫出符合要求的,并在第一象限的點G的坐標;
(3)將拋物線沿其對稱軸平移,使拋物線與線段EF總有公共點.試探究:拋物線向上最多可平移多少個單位長度?

查看答案和解析>>

同步練習冊答案